Revision Sheet

Stud	ent's Name		Class	10 Adv	Date	/11/2019
	What is the $2x - 3y = 4x + 3y = 4x$					/1
1	A	(0, 3)				
1	В	(1, 3)				
	С	(3, -1)				
	D	(3,0)				
	What is the solution of the next system of equations? x - 2y + 3z = 1 4y - 4z = 12 8y - 14z = 0				/1	
2	A	(-2, 7, 1)				
	В	(3, 7, 4)				
	С	(7, 4, 3)				
	D	(1, 8, 0)				
3	Which sta $4y = x + 8$ $12y = 3x + 8$		quations	s?		/1
	A	The lines are parallel				
	В	The lines are the same				
	С	The lines intersect in only one point				
	D	The lines intersect in more than one point, l	but are	not the sa	ime	

	Triangle DEF has vertices D (-6, 2), E (3, 5), and F (8, -7). Evaluate the determinant below to find the area of the triangle.				
	A	54.5 square units			
4	В	58 square units $1 - 6 2$	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$		
	С	$A = \frac{1}{2} \qquad 3 \qquad 5$	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$		
	D	61.5 square units	1 _		

	What is the value of $\begin{vmatrix} 2 & 3 & -1 \\ 0 & 2 & 4 \\ -2 & 5 & 6 \end{vmatrix}$				
	A	-44			
5	В	$-\frac{1}{4}$			
	С	$\frac{1}{4}$			
	D	44			

	Find [3	1] $\cdot \begin{bmatrix} 2 \\ 5 \end{bmatrix}$, if possible.	/1
	A	[-3]	
6	В	$\begin{bmatrix} 8 & -4 \\ 12 & 6 \end{bmatrix}$	
	C	[11]	
	D	undefined	

	Which gra	aph shows the solution of the system of inequalities $y \le 2x + 3$ /1
		$y < \frac{1}{3}x + 5$
	A	
7	В	
	С	
	D	

8	Solve the system of equations		x + y + 2z = 6 2x + 5z = 12 x + 2y + 3z = 9	/1
	A	(1, 1, 3)		
	В	(1, 1, 2)		
	C	(3, 1, 2)		
	D	(2, 1, 1)		

	Find XY i	$f X = \begin{bmatrix} 0 & -6 \\ 3 & 5 \end{bmatrix} \text{ and } Y = \begin{bmatrix} 8 \\ -1 \end{bmatrix}$	/1
	A	$\begin{bmatrix} 9 \\ -5 \end{bmatrix}$	
9	В	$\begin{bmatrix} -3 \\ 2 \end{bmatrix}$	
	С	6 19	
	D	Can't be solved	

	Evaluate	$\begin{vmatrix} 4 & -6 \\ 2 & 5 \end{vmatrix}$	/1
	A	32	
10	В	8	
	C	-32	
	D	-8	

	What is t	the inverse of $\begin{bmatrix} 6 & -3 \\ -8 & 4 \end{bmatrix}$	/1
	A	$\begin{bmatrix} \frac{1}{12} & \frac{1}{16} \\ \frac{1}{6} & \frac{1}{8} \end{bmatrix}$	
11	В	$\begin{bmatrix} 4 & 8 \\ 3 & 6 \end{bmatrix}$	
	С	$\begin{bmatrix} 4 & -8 \\ -3 & 6 \end{bmatrix}$	
	D	Not exist	

	Write a c	quadratic equation in standard form with roots -4 and $\frac{1}{3}$ /1
	A	$3x^2 + 11x - 4 = 0$
12	В	$4x^2 + 3x - 11 = 0$
	С	$5x^2 + 11x - 3 = 0$
	D	$3x^2 + 21x - 7 = 0$

-	For whic	h equation is the axis of symmetry $x = 4$?	/1
	A	$f(x) = x^2 - 4x + 3$	
13	В	$f(x) = x^2 - 8x + 7$	
	C	$f(x) = x^2 + 8x - 3$	
	D	$f(x) = x^2 + 4x + 2$	

14	Simplify	(5-3i)(4+2i)	/1
	A	26 + 2i	
	В	2-26i	
	C	26-2i	
	D	2 + 26i	

	Which v	alue of c makes the trinomial x^2 - $12x + c$ a perfect square	/1
	A	6	
15	В	12	
	C	36	
	D	144	

	Solve x^2	-2x = 15 by completing the square	/1
	A	-4, -1	
16	В	-3, 5	
	C	-2, 3	
	D	5, 7	

	What are the roots of $y = 2x^2 + 10x - 48$		/1
	A	-5, 4	
17	В	-6, 1	
	С	-8, 3	
	D	2, 3	

18	Solve the following equation using any method $-9x^2 + 40x + 84 = 0$		/1
	A	14, -9	
	В	$-6, \frac{14}{9}$	
	С	9, 6	
	D	$6, -\frac{14}{9}$	

19		ne whether the function has a maximum or minimum value. maximum or minimum value of the function $f(x) = -x^2 + 6x$	/1
	A	Max at $y = 9$	
	В	Min at $y = 9$	
	C	Max at $y = -27$	
	D	Min at $y = -27$	

	Which ed	quation below has roots at -6 and $\frac{1}{5}$	/1
	A	$0 = 5x^2 - 29x - 6$	
20	В	$0 = 5x^2 + 31x + 6$	
	C	$0 = 5x^2 + 29x - 6$	
	D	$0 = 5x^2 - 31x + 6$	

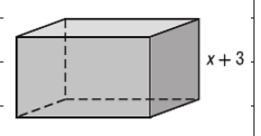
21	Simplify	$(3-4\mathring{i})-(9-5\mathring{i})$	/1
	A	$-6-9\mathring{t}$	
	В	-6+i	
	C	12-9i	
	D	$6 + \mathring{\iota}$	

22	Identify the vertex of the $3x^2 + 6x = 2 + y$		/1
	A	(5,-1)	
	В	(-1, -5)	
	С	(-5, -1)	
	D	(1, -5)	

23	Simplify	$(4n^2 - 6n + 5) - (6n^2 + 3n - 1)$	/1
	A	$-2n^2-3n+4$	
	В	$-2n^2 - 9n + 6$	
	C	$2n^2 + 3n - 4$	
	D	$2n^2 + 9n - 6$	

The volume of the rectangular prism is $6x^3 + 19x^2 + 2x - 3$. Which polynomial expression represents the area of the base?

/1


/1

 $6x^4 + 37x^3 + 59x^2 + 3x - 9$ 24

 $6x^2 + x + 1$ В

 $6x^2 + x - 1$ \mathbf{C}

6x + 1D

Find p (-2) if p (x) = $\frac{2}{3}x^3 + \frac{1}{3}x^2 - 5x$

0 \mathbf{A}

16 B

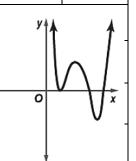
-6 \mathbf{C}

6 D

26	Simplify	$(2b)^2(6b)^3$	/1
	A	864 b ⁵	
	В	$24 b^5$	
	C	864 b ⁶	
	D	288 h ⁶	

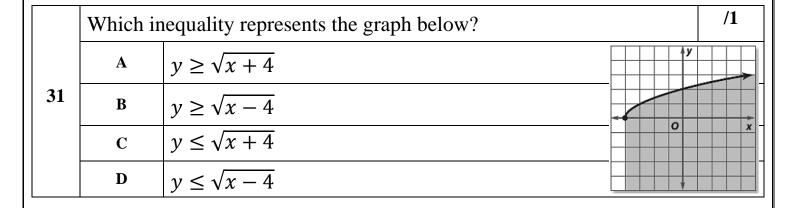
How many unique real zeros does the graph have? /1

0 A


27

25

3 \mathbf{C}


5 D

	If $h(x) =$	x^3 – $2x^2$ + 6, what is the value of $2h(3a)$?	/1
	A	$27 a^3 - 18 a^2 + 6$	
28	В	$54 a^3 - 36 a^2 + 12$	
	С	$9 a^3 - 12 a^2 + 12$	
	D	$27 a^3 - 12 a^2 + 6$	

	Let f(x) =	$= -2x^4 - 6x^3 + x + 13$. Use synthetic substitution to find f (-3) /1
	A	21
29	В	334
	C	- 308
	D	10

	Given a polynomial and one of its factors, find the remaining factors of the polynomial. $2x^3 + 15x^2 + 22x - 15$; $x + 5$		
	A	(x-1)(x-3)(x+5)	
30	В	(2x+1)(x-3)(x+5)	
	C	(2x-1)(x+3)(x+5)	
	D	(x+1)(x+3)(x+5)	

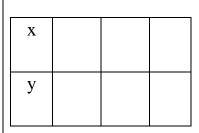
	Which ex	expression is equivalent to $216^{-\frac{1}{3}}$	/1
	A	-6	
32	В	$-\frac{1}{6}$	
	C	6	
	D	$\frac{1}{6}$	

	Simplify	$b^{\frac{7}{6}} \cdot b^{-\frac{1}{2}}$	/1
	A	$\sqrt[3]{b^2}$	
33	В	$\sqrt[3]{b^5}$	
	С	$\sqrt{b^3}$	
	D	$\sqrt[5]{b^3}$	

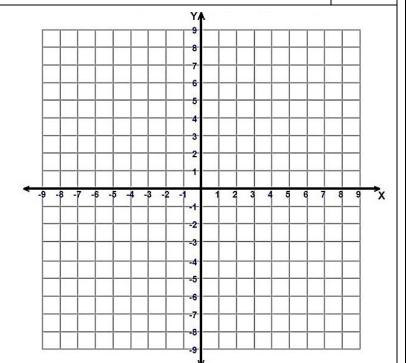
	What is t	the area of the rectangle?		/1
	A	$2\sqrt{3} + 3\sqrt{2} \text{ units}^2$	$2 + \sqrt{6}$	
34	В	$4 + 2\sqrt{6} + 2\sqrt{3} \text{ units}^2$	- , ,,,	
	С	$2\sqrt{3} + \sqrt{6} \text{ units}^2$		√3
	D	$2\sqrt{3} + 3 \text{ units}^2$		

	The solu	tion of the following inequality is $\sqrt{y-7} + 5 \ge 10$ /1
	A	[32,∞)
35	В	[7,∞)
	C	[7, 32]
	D	(7, 32)

Solve the system of equations by graphing


$$3x + y = 4$$

$$y = 2x - 1$$


/2

у

1

The solution is (,)

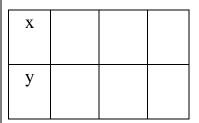
Solve the system of equation by Substitution or Elimination

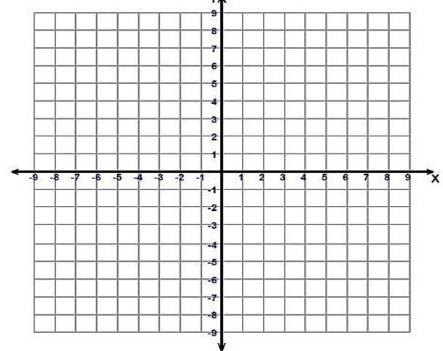
$$a - 3b = -22$$

$$4a + 2b = -4$$

/2

Graph the system of inequality. Name the coordinates of the vertices of the feasible region. Find the maximum and the minimum values of the given function.


 $5 \ge y \ge -3$ $4x + y \le 5$


 $-2x + y \le 5$

f(x, y) = 4x - 3y

 $\mathbf{I}(\mathbf{A}, \mathbf{y}) = \mathbf{A}\mathbf{A} = \mathbf{J}\mathbf{y}$

3 y

Use a matrix equation to solve the system of equations

$$2y - 4x = 3$$

$$4x - 3y = -6$$

/2

/3

	Find the product of the following $\begin{bmatrix} 2 & 9 & -3 \\ 4 & -1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 4 & 2 \\ -6 & 7 \\ -2 & 1 \end{bmatrix}$	/2
5		
	Use Cramer's Rule to solve each system of equations $2x - y = -9$	/3
6	x + 2y = 8	
0		
	At an office supply store, Jamal bought 3 notebooks and 5 pens for	/2

AED 13.75. If a notebook costs AED 1.25 more than a pen, how much does a notebook cost? How much does a pen cost?

7

I	Find 2(B – A) if A = $\begin{bmatrix} -3 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 5 \\ -2 \end{bmatrix}$ and $B = \begin{bmatrix} 2 \\ -6 \end{bmatrix}$	$\begin{bmatrix} -8 \\ -4 \end{bmatrix}$	/2
---	--	---	--	----

8

solve the system of equations
$$\begin{bmatrix} 3 & -1 \\ 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$$
 /2

9

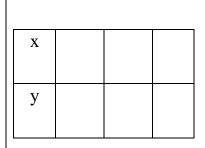
$$3x - y = 0$$

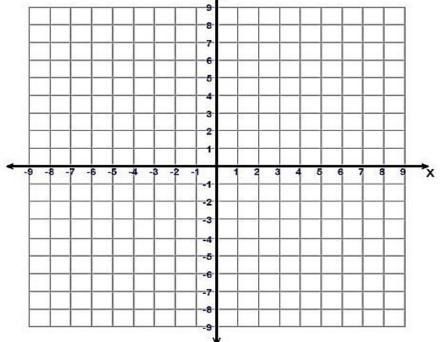
$$5x + 2y = 22$$

/2

10

Solve the system of inequalities by graphing. $y \ge \frac{3}{2}x - 3$


$$y \ge \frac{3}{2}x - 3$$


$$y < 4 - 2x$$

/2

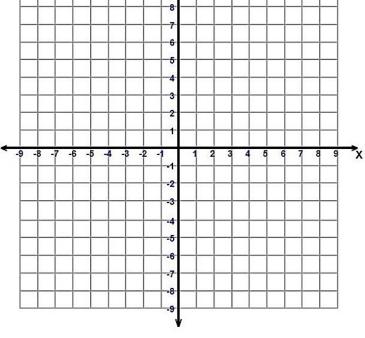
y

11



solve the following equations by factoring

1)
$$x^2 - 4x = -3$$


2)
$$x^2 = 144$$

/2

YA 9 8

13

Find the **y-intercept**, the equation of the **axis of symmetry**, and the x-coordinate of **the vertex** for $f(x) = 2x^2 + 8x - 3$

/3

/2

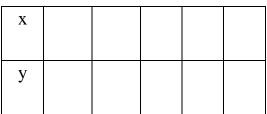
15

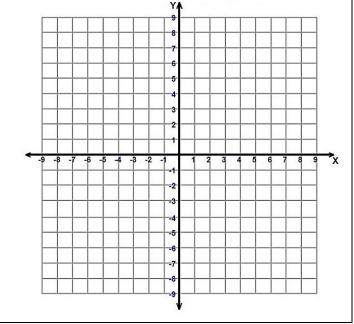
$$A = 126 \,\mathrm{m}^2$$

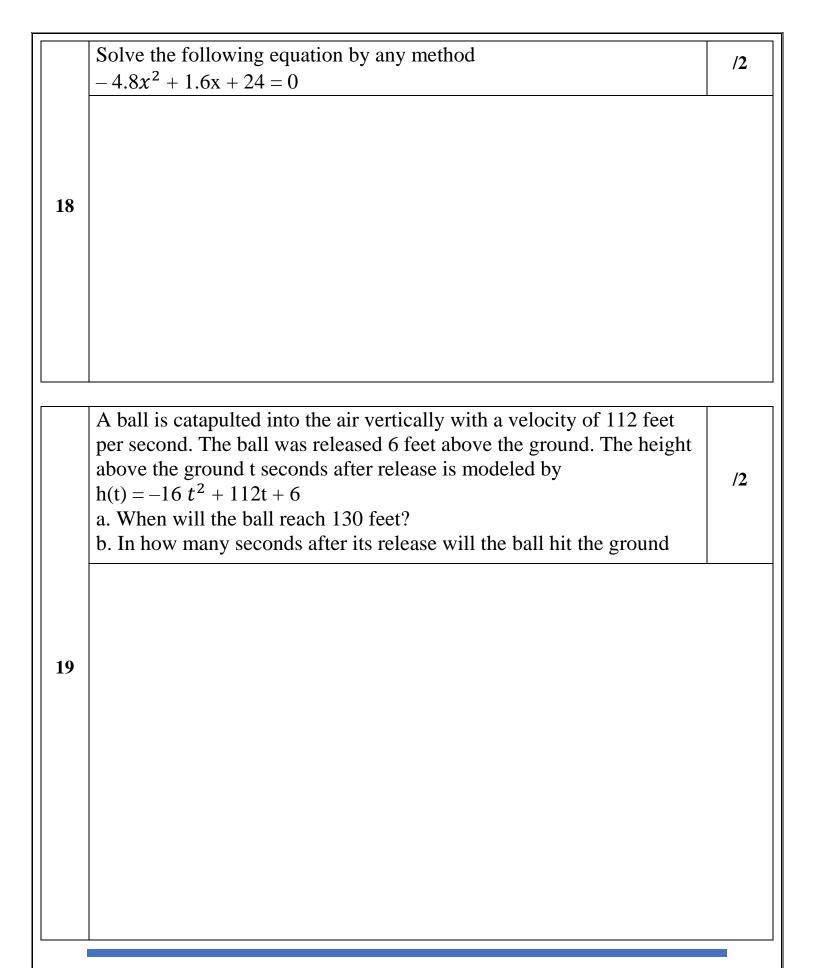
x-3

$$x + 2$$

Solve x^2 - 4x - 45 = 0 by using the Quadratic Formula


/2


16


Graph $y > x^2 + 3x + 2$

/3

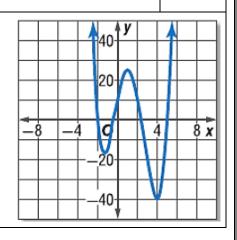
	The rectangle below has an area of 104 square centimeters. Find the value of x and the dimensions of the rectangle.	/2
20	$A = 104 \text{cm}^2$	x – 1
	x + 4	
	Solve the following inequality algebraically $4x^2 - 19x \le -12$	/2
21		
	For the following function find the y-intercept , the equation of the axis of symmetry , and the coordinate of the vertex then state the maximum or minimum value $f(x) = x^2 + 4x - 7$	/2
22		

/2

23

Find
$$3f(a-4) - 2h(a)$$
 if $f(x) = x^2 + 3x$ and $h(x) = 2x^2 - 3x + 5$.

/2


24

Refer to the graph

a) Estimate the x-coordinate of every turning point and determine if those coordinates are relative maxima or relative minima.

/3

- b) Estimate the x-coordinate of every zero.
- c) State the domain and range of the function?

	Simplify $(2x^3 + 11x^2 + 17x + 5)(2x + 5)^{-1}$	/2
26		

Factor completely. If the polynomial is not factorable, write prime
$$a^2x + 3ax + 2x - a^2y - 3ay - 2y$$

Solve the equation
$$x^4 - 11x^2 + 28 = 0$$
 /2

	Find all zeros of the function $f(x) = x^3 - 4x^2 + x + 6$	/2
29		
	The volume of the rectangular prism shown is 612 cubic centimeters. Find the dimensions of the prism.	/2
30	w cm $(w-5) cm$	+ 8) cm
	The area of the picture and frame shown below is 168 square inches. What is the width of the frame?	/2
31	10 in.	x in.

Determine whether each pair of functions are inverse functions. Write yes or no. Explain your reasoning. $f(x) = \frac{1}{3}x + 5$, g(x) = 3x - 15

/2

32

If f(x) = 3x + 2 and $g(x) = x^2 - 2x + 1$, find (f - g)(x).

33

Solve the equation $\sqrt{x-6} - \sqrt{x} = 3$

34

	Simplify $\frac{m^{\frac{1}{2}} - 1}{2m^{\frac{1}{2}} + 1}$	/2
35		

	Solve the inequality $-2 + \sqrt{3m-1} < 4$	/2
36		

37	the solution of $1 + \sqrt{x + 11} = \sqrt{2x + 15}$			
	A	{-7}		
	В	{-7,5}		
	C	{5}		
	D	no solution		