

Science Grade 5

Term 1 (2018/2019)

Chapter1: Building a Better Scientist

Prepared by: Fatima Theyab

- Science: is a way of <u>learning</u> about the natural world.
- **Observation:** is using one or more of your senses to identify or learn about something
- Data: different types of <u>information</u> that can be collected to answer a scientific question
- **Scientific method**: a <u>series of steps</u> that scientist use when conducting a scientific investigation
- **Hypothesis:** is a <u>prediction</u> that can be tested in investigation.
- Technology: the <u>practical</u> use of science
- **Precision:** a description of <u>how close</u> repeated measurements are to each other
- Inference: is conclusion formed from available information or evidence
- Independent variables: the variable that is <u>changed</u> in controlled experiment
- **Dependent variables:** the variable that is being <u>measured</u> during an investigation
- Scientific theory: is an attempt to explain a pattern observed repeatedly in the natural world
- Scientific law: a rule that describes a pattern in nature. Ex: gravity force
- Life science: The study of living things. Ex: study plants and animal.
- Earth science: the study of earth and space. Ex: study rocks, soils, oceans, clouds, rivers and climate system
- **Physical science:** the study of matter (Chemistry) and energy (Physics).

Quantitative data: data that can be <u>measured</u>. Ex: length, width, height, volume, mass and weight

Qualitative data: <u>descriptive</u> data that cannot be measured. Ex: colors, texture, smells and tastes

Description: is a <u>summary</u> of observations.

Explanation: is an interpretation of observation.

Precision: is <u>how close</u> repeated measurements are to each other

Consistency: is the ability to repeat a task with <u>little variation</u>.

Graphs: are used to organize and summarize data in a <u>visual way</u>. Ex: bar graphs, circle graph and maps.

Tables: display information in rows and columns

Mean: is the sum of the numbers in a data divided by the number of entries in the data set

Median: is the <u>middle</u> number in a set of data when the data are arranged in numerical order.

Range: is the set of data in the <u>difference</u> between the highest and lowest values.

Measurement: is a <u>precise expression</u> of a physical property as length and mass in a specific unit such as centimeters or grams.

Mass: is the amount of matter in an object.

Metric balance: is used to measure an object's mass.

Spring scales: scales hat use spring to measure the object weight

Volume: the amount of space that matter takes up. Volume= length * width* height

Graduated cylinder: is a tall, narrow, clear container used for measuring the <u>volume</u> of a liquid in milliliter (ml) or Litters (L)

Thermometer: is used to measure <u>temperature</u> in Fahrenheit scale (°F) or Celsius scale (°C)

Science Gr 5 Physical properties measurements summary

Physical properties	Tools	Unit
Length, width and height	Metric ruler Measuring Tape	 Millimeter (mm) Centimeter (cm) Meter (m) Kilometers (Km)
Mass and weight	Metric Balance Spring scales	 Grams (g) Kilograms (kg)
Volume = length * width* height	Graduated cylinder	Milliliters (ml)Liters (L)
Temperature Dial Thermometer		Fahrenheit (°F)Celsius scale (°C)

Choose the correct definition:

• Quantitative data:

- o an interpretation of observation.
- o data that can be measured. Ex: length, width, height, volume, mass and weight
- o descriptive data that cannot be measured. Ex: colors, texture, smells and tastes
- o a summary of observations.

• Median:

- o the sum of the numbers in a data divided by the number of entries in the data set
- o the set of data in the difference between the highest and lowest values
- o a precise expression of a physical property as length and mass in a specific unit such as centimeters or grams
- o the middle number in a set of data when the data are arranged in numerical order

• Precision:

- o are used to organize and summarize data in a <u>visual way</u>. Ex: bar graphs, circle graph and maps.
- o display information in rows and columns
- o the ability to repeat a task with little variation.
- o how close repeated measurements are to each other

• Metric balance:

- o used to measure an object's mass.
- o scales hat use spring to measure the object weight
- o the amount of space that matter takes up. Volume= length * width* height
- o the amount of matter in an object.

• Graduated cylinder:

- o used to measure an object's mass
- o is used to measure temperature in Fahrenheit scale (°F) or Celsius scale (°C)
- o is a tall, narrow, clear container used for measuring the volume of a liquid in milliliter (ml) or Litters (L)
- o scales hat use spring to measure the object weight

• Science:

- different types of <u>information</u> that can be collected to answer a scientific question
- is a way of <u>learning</u> about the natural world.
- is using one or more of your senses to identify or learn about something
- a <u>series of steps</u> that scientist use when conducting a scientific investigation

Hypothesis:

- the <u>practical</u> use of science
- a description of <u>how close</u> repeated measurements are to each other
- is conclusion formed from available information or evidence
- is a <u>prediction</u> that can be tested in investigation.

• Earth science:

- a rule that describes a pattern in nature. Ex: gravity force
- The study of living things. Ex: study plants and animal.
- the study of matter (Chemistry) and energy (Physics).
- the study of earth and space. Ex: study rocks, soils, oceans, clouds, rivers and climate system

• Dependent variables:

- the variable that is being <u>measured</u> during an investigation
- a <u>rule</u> that describes a pattern in nature. <u>Ex: gravity force</u>
- is an attempt to explain a pattern observed repeatedly in the natural world
- the variable that is changed in controlled experiment

Observation:

- different types of <u>information</u> that can be collected to answer a scientific question
- is a way of <u>learning</u> about the natural world.
- is using one or more of your senses to identify or learn about something
- a <u>series of steps</u> that scientist use when conducting a scientific investigation

• Precision:

- is <u>conclusion</u> formed from available information or evidence
- a description of <u>how close</u> repeated measurements are to each other
- the <u>practical</u> use of science
- is a <u>prediction</u> that can be tested in investigation.

• Inference:

- a description of <u>how close</u> repeated measurements are to each other
- the <u>practical</u> use of science
- is <u>conclusion</u> formed from available information or evidence
- is a <u>prediction</u> that can be tested in investigation.

• Technology:

- the practical use of science
- a description of <u>how close</u> repeated measurements are to each other
- is <u>conclusion</u> formed from available information or evidence
- is a <u>prediction</u> that can be tested in investigation.

• Scientific method:

- different types of <u>information</u> that can be collected to answer a scientific question
- is a way of <u>learning</u> about the natural world.
- is using one or more of your senses to identify or learn about something
- a series of steps that scientist use when conducting a scientific investigation

• Independent variables:

- the variable that is being <u>measured</u> during an investigation
- a <u>rule</u> that describes a pattern in nature. <u>Ex: gravity force</u>
- is an attempt to <u>explain</u> a pattern observed repeatedly in the natural world
- the variable that is <u>changed</u> in controlled experiment

Created by Fatima Theyab 2018/2019

• Scientific law:

- a rule that describes a pattern in nature. Ex: gravity force
- the variable that is being <u>measured</u> during an investigation
- is an attempt to explain a pattern observed repeatedly in the natural world
- the variable that is <u>changed</u> in controlled experiment

• Data:

- different types of <u>information</u> that can be collected to answer a scientific question
- is a way of <u>learning</u> about the natural world.
- is using one or more of your senses to identify or learn about something
- a <u>series of steps</u> that scientist use when conducting a scientific investigation

• Life science:

- The study of living things. Ex: study plants and animal.
- a <u>rule</u> that describes a pattern in nature. <u>Ex: gravity force</u>
- the study of matter (Chemistry) and energy (Physics).
- the study of earth and space. <u>Ex: study rocks, soils, oceans, clouds, rivers and climate system</u>

• Scientific theory:

- the variable that is <u>changed</u> in controlled experiment
- the variable that is being measured during an investigation
- a <u>rule</u> that describes a pattern in nature. <u>Ex: gravity force</u>
- is an attempt to explain a pattern observed repeatedly in the natural world

Physical science:

- the study of earth and space. Ex: study rocks, soils, oceans, clouds, rivers and climate system
- a <u>rule</u> that describes a pattern in nature. <u>Ex: gravity force</u>
- The study of living things. Ex: study plants and animal.
- the study of matter (Chemistry) and energy (Physics).

• Consistency:

- o display information in rows and columns
- o the ability to repeat a task with little variation.
- o are used to organize and summarize data in a visual way. Ex: bar graphs, circle graph and maps.
- o how close repeated measurements are to each other

Qualitative data:

- o a summary of observations.
- o an interpretation of observation.
- o descriptive data that cannot be measured. Ex: colors, texture, smells and tastes
- o data that can be measured. Ex: length, width, height, volume, mass and weight

Volume:

- o the amount of matter in an object.
- o used to measure an object's mass.
- o scales hat use spring to measure the object weight
- o the amount of space that matter takes up. Volume= length * width* height

Tables:

- o how close repeated measurements are to each other
- o the ability to repeat a task with little variation.
- o are used to organize and summarize data in a visual way. Ex: bar graphs, circle graph and maps.
- o display information in rows and columns

• Mean:

- o a precise expression of a physical property as length and mass in a specific unit such as centimeters or grams
- o the middle number in a set of data when the data are arranged in numerical order
- o the sum of the numbers in a data divided by the number of entries in the data set
- o the set of data in the difference between the highest and lowest values

• Measurement:

- o the set of data in the difference between the highest and lowest values
- o a precise expression of a physical property as length and mass in a specific unit such as centimeters or grams
- o the sum of the numbers in a data divided by the number of entries in the data set
- o the middle number in a set of data when the data are arranged in numerical order

• Description:

- o descriptive data that cannot be measured. Ex: colors, texture, smells and tastes
- o a summary of observations.
- o an interpretation of observation.
- o data that can be measured. Ex: length, width, height, volume, mass and weight

Mass:

- o scales hat use spring to measure the object weight
- o the amount of space that matter takes up. Volume= length * width* height
- o used to measure an object's mass.
- o the amount of matter in an object.

• Graphs:

- o the ability to repeat a task with little variation.
- o are used to organize and summarize data in a visual way. Ex: bar graphs, circle graph and maps.
- o display information in rows and columns
- o how close repeated measurements are to each other

• Spring scales:

- o the amount of space that matter takes up. Volume= length * width* height
- o the amount of matter in an object.
- o used to measure an object's mass.
- o scales hat use spring to measure the object weight

• Volume:

- o the amount of matter in an object.
- o used to measure an object's mass.
- o scales hat use spring to measure the object weight
- o the amount of space that matter takes up. Volume= length * width* height

Thermometer:

- o a tall, narrow, clear container used for measuring the volume of a liquid in milliliter (ml) or Litters (L)
- o scales hat use spring to measure the object weight
- o used to measure an object's mass
- o used to measure temperature in Fahrenheit scale (°F) or Celsius scale (°C)

Explanation:

- o data that can be measured. Ex: length, width, height, volume, mass and weight
- o descriptive data that cannot be measured. Ex: colors, texture, smells and tastes
- o a summary of observations.
- o an interpretation of observation

Range:

- o the middle number in a set of data when the data are arranged in numerical order
- o the sum of the numbers in a data divided by the number of entries in the data set
- o the set of data in the difference between the highest and lowest values
- o a precise expression of a physical property as length and mass in a specific unit such as centimeters or grams

Science Gr 5 Science Worksheet

Fill in each blank with the best term from the list.

- -----is the ability to repeat a task with little variation
- -----data that can be measured
- -----is how close repeated measurements being to each other
- ------Handheld magnification glass that makes objects look larger.
- -----data that can be measured
- ----- scales hat use spring to measure the object weight

Fill the blank in the table

	Mass	Volume of liquid	Temperature
Tool			
Unit			

	Quantitative data	Qualitative data
Definition		
Example		

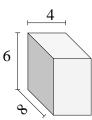
Convert the following metric units

2km =m	345 cm=m
46 dm =cm	5000 m=km
3.20 dam=dm	10 cm=m
500 dm =dam	3 m=cm

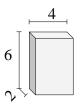
Science Gr 5 Exam sample

Fill in each blank with the best term from the list.

	Hypothesis	dependent vari	ables scier	tific method	hand lens	consistency
•		is the ability to prediction or a Variable that b Series step tha Handheld mag	nswering questiveing measured t scientist use he nification glass	on en conduction a that makes obj	ın investigatic	
	-					
Form	Hypothesis	observation	ask question	test hypothesi	is result	draw conclusion
<u>Fill</u>	the blank i	n the table				
			Quantitat	ive	Quali	itative
De	finition					
Exa	ample					
Too			Mass		Volume	of liquid


Science Gr 5 Exam sample

Exam sample
Choose the correct answer
• Which of these word is not example for earth science?
• Energy
• Rocks
• Soil
•is the middle number for set of a data
• Mean
Median
• Range
• Which tool is used to measure weight and what its unit?
• Spring scale/ g
• Ruler/ cm
Graduated cylinder/ ml
• To see small things more clear we use microscope.
• True
• False
• Precision is how close repeated measurement to each other
• True
• False
Find the volume of regular shape if you know the length is 5, the width is 10 and the height is 2?



Find the volume of each of the rectangular prisms. Measured in cm (not to scale).

1)

2)

 $\underline{Answers}$

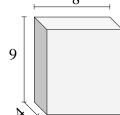
1. _____

2.

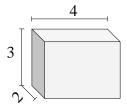
3. _____

4. _____

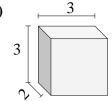
5. _____

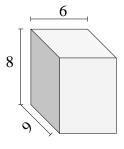

6. _____

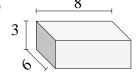
7. _____

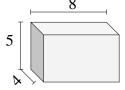

10.

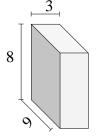
3) 3


4)

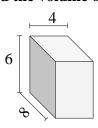

5)


6

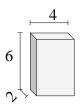

7)


8)

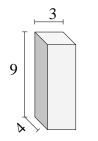
9)

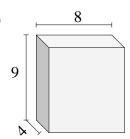


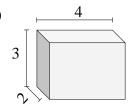
10)

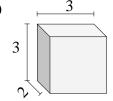


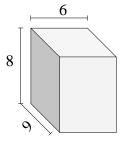
Find the volume of each of the rectangular prisms. Measured in cm (not to scale).

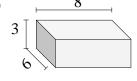

1)

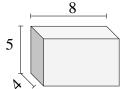

2)


3)


4)


5)


6)


7)

8)

9)

10)

- 1. **192**
- **48**
- 108
- 288
- 5. **24**
- **18**
- 7. **432**
- **144**
- 9. **160**
- 10. **216**

Name: _____ Date: _____

Measuring Units Worksheet

1 b.
$$400 \text{ cm} = \underline{\hspace{1cm}} \text{m}$$

$$2 a. 9 m = cm$$

2 b.
$$3 \text{ m} = \underline{\hspace{1cm}} \text{cm}$$

$$3 a. 100 cm = ___ m$$

3 b.
$$500 \text{ cm} = \underline{\hspace{1cm}} \text{m}$$

4 a.
$$200 \text{ cm} = \underline{\hspace{1cm}} \text{m}$$

4 b.
$$8 \text{ m} = ___ \text{ cm}$$

5 a.
$$700 \text{ cm} = \underline{\hspace{1cm}} \text{m}$$

5 b.
$$6 \text{ m} = ___ \text{ cm}$$

6 a.
$$400 \text{ cm} = \underline{\hspace{1cm}} \text{m}$$

6 b.
$$200 \text{ cm} = \underline{\hspace{1cm}} \text{m}$$

$$7 a. 9 m = cm$$

7 b.
$$600 \text{ cm} = \text{m}$$

8 b.
$$6 \text{ m} = \underline{} \text{ cm}$$

9 b.
$$300 \text{ cm} = \text{m}$$

10 b.
$$7 \text{ m} =$$
____ cm

Name: D	Date:
---------	-------

10 b.

700 cm

1 a.	1000 cm	1 b.	4 m
2 a.	900 cm	2 b.	300 cm
3 a.	1 m	3 b.	5 m
4 a.	2 m	4 b.	800 cm
5 a.	7 m	5 b.	600 cm
6 a.	4 m	6 b.	2 m
7 a.	900 cm	7 b.	6 m
8 a.	3 m	8 b.	600 cm
9 a.	10 m	9 b.	3 m

10 a.

100 cm

Name: _____ Date: _____

Measuring Units Worksheet

1 a.
$$400 \text{ cm} = \underline{\hspace{1cm}} \text{m}$$

1 b.
$$3,000 \text{ m} = ___ \text{km}$$

$$2 a. 700 cm = ___ m$$

3 a.
$$4,000 \text{ m} = \underline{\qquad} \text{ km}$$

3 b.
$$10 \text{ m} = \text{cm}$$

4 a.
$$100 \text{ cm} = \underline{\hspace{1cm}} \text{m}$$

4 b.
$$500 \text{ cm} = \underline{\hspace{1cm}} \text{m}$$

5 a.
$$3 \text{ m} = \underline{\hspace{1cm}} \text{ cm}$$

5 b.
$$1,000 \text{ m} = ___ \text{km}$$

6 a.
$$8 \text{ m} = \underline{\hspace{1cm}} \text{ cm}$$

6 b.
$$6 \text{ m} = \underline{\hspace{1cm}} \text{cm}$$

7 a.
$$9,000 \text{ m} = \underline{\hspace{1cm}} \text{km}$$

7 b.
$$200 \text{ cm} = \underline{\hspace{1cm}} \text{m}$$

8 a.
$$5 \text{ km} = \underline{\qquad} \text{ m}$$

8 b.
$$6,000 \text{ m} =$$
____ km

9 a.
$$2,000 \text{ m} = \text{km}$$

9 b.
$$900 \text{ cm} = \text{m}$$

10 a.
$$8,000 \text{ m} =$$
____ km

Name:	Date:
vaine	Dale.

- **1 a.** 4 m
- **2 a.** 7 m
- 3 a. 4 km
- **4 a.** 1 m
- **5 a.** 300 cm
- 6 a. 800 cm
- **7 a.** 9 km
- **8 a.** 5,000 m
- **9 a.** 2 km
- **10 a.** 8 km

- **1 b.** 3 km
- **2 b.** 7 km
- 3 b. 1000 cm
- **4 b.** 5 m
- **5 b.** 1 km
- 6 b. 600 cm
- **7 b.** 2 m
- 8 b. 6 km
- **9 b.** 9 m
- **10 b.** 10,000 m

Name: _____ Date: _____

Measuring Units Worksheet

1 a.
$$7 \text{ cm} = \underline{\hspace{1cm}} \text{mm}$$

1 b.
$$50 \text{ mm} = ___ \text{ cm}$$

$$2 a. 400 cm = ___ m$$

3 a.
$$1000 \text{ cm} = \underline{\hspace{1cm}} \text{m}$$

3 b.
$$700 \text{ cm} = \underline{\hspace{1cm}} \text{m}$$

6 a.
$$6 \text{ m} = \underline{\hspace{1cm}} \text{cm}$$

6 b.
$$5 \text{ m} = \underline{\hspace{1cm}} \text{cm}$$

$$7 a. 2 m = cm$$

7 b.
$$800 \text{ cm} = \underline{\hspace{1cm}} \text{m}$$

8 a.
$$9 \text{ m} = \underline{} \text{ cm}$$

8 b.
$$3 \text{ m} = ___ \text{ cm}$$

$$9 a. 90 mm = cm$$

Name:	Date:
vaine	Dale.

1 a.	70 mm	1 b.	5 cm
2 a.	4 m	2 b.	100 cm
3 a.	10 m	3 b.	7 m
4 a.	3 cm	4 b.	2 cm
5 a.	1 cm	5 b.	80 mm
6 a.	600 cm	6 b.	500 cm
7 a.	200 cm	7 b.	8 m
8 a.	900 cm	8 b.	300 cm
9 a.	9 cm	9 b.	100 mm
10 a.	40 mm	10 b.	6 cm

Name: ______ Date: _____

Measuring Units Worksheet

1 b.
$$10,000 \text{ m} = \underline{\hspace{1cm}} \text{km}$$

2 a.
$$4,000 \text{ m} = \underline{\hspace{1cm}} \text{km}$$

3 a.
$$7 \text{ km} = \underline{\qquad} \text{ m}$$

3 b.
$$5,000 \text{ m} = \text{km}$$

5 a.
$$9,000 \text{ m} =$$
____ km

6 a.
$$5,000 \text{ m} = \text{km}$$

6 b.
$$10,000 \text{ m} = \text{km}$$

$$7 a. 8 km = m$$

8 a.
$$1,000 \text{ m} =$$
____ km

8 b.
$$10,000 \text{ m} = \underline{\hspace{1cm}} \text{km}$$

9 a.
$$5,000 \text{ m} = \text{km}$$

9 b.
$$3 \text{ km} = \underline{\qquad} \text{ m}$$

10 a.
$$2,000 \text{ m} =$$
____ km

Name:	Date:
vaine	Dale.

1 a.	1,000 m	1 b.	10 km
2 a.	4 km	2 b.	2,000 m
3 a.	7,000 m	3 b.	5 km
4 a.	3,000 m	4 b.	8,000 m
5 a.	9 km	5 b.	6,000 m
6 a.	5 km	6 b.	10 km
7 a.	8,000 m	7 b.	7,000 m
8 a.	1 km	8 b.	10 km
9 a.	5 km	9 b.	3,000 m
10 a.	2 km	10 b.	3,000 m

Name: ______ Date: _____

Measuring Units Worksheet

1 a.
$$6 \text{ cm} = \underline{\hspace{1cm}} \text{mm}$$

$$2 a. 50 \text{ mm} = \underline{\hspace{1cm}} \text{cm}$$

3 b.
$$8 \text{ cm} = \text{mm}$$

$$7 a. 80 mm = cm$$

9 a.
$$3 \text{ cm} = \underline{\hspace{1cm}} \text{mm}$$

Name:	 Date:

1 a.	60 mm	1 b.	90 mm
2 a.	5 cm	2 b.	10 cm

_____ Date: _____

Measuring Units Worksheet

1 a.
$$6 \text{ cm} = \underline{\hspace{1cm}} \text{mm}$$

3 b.
$$8 \text{ cm} = \text{mm}$$

$$7 a. 80 mm = cm$$

$$9 a. 3 cm = ___ mm$$

Name :	Score :
	version - Length
Convert:	
1) 52.174 cm =mm	2) 81.66 m = cm
3) 93.6 cm =dm	4) 416.8 hm = km
5) 28 dm =m	6) 55.7 m =dam
7) 38.68 dm =mm	8) 8.94 km =hm
9) 68.20 dam =dm	10) 7150 cm = m
11) 19.8 m =dm	12) 880 dam = hm

Name: _____ Date: _____

Measuring Units Worksheet

1 b.
$$400 \text{ cm} = \underline{\hspace{1cm}} \text{m}$$

$$2 a. 9 m = ___ cm$$

2 b.
$$3 \text{ m} = ___ \text{ cm}$$

$$3 a. 100 cm = ___ m$$

3 b.
$$500 \text{ cm} = \underline{\hspace{1cm}} \text{m}$$

4 a.
$$200 \text{ cm} = \underline{\hspace{1cm}} \text{m}$$

4 b.
$$8 \text{ m} = ___ \text{ cm}$$

5 a.
$$700 \text{ cm} = \underline{\hspace{1cm}} \text{m}$$

5 b.
$$6 \text{ m} = \underline{} \text{ cm}$$

6 a.
$$400 \text{ cm} = \underline{\hspace{1cm}} \text{m}$$

$$7 a. 9 m = cm$$

7 b.
$$600 \text{ cm} = \text{m}$$

8 b.
$$6 \text{ m} = \underline{} \text{ cm}$$

9 b.
$$300 \text{ cm} = \text{m}$$

10 b.
$$7 \text{ m} =$$
____ cm

Name: _____ Date: _____

Measuring Units Worksheet

1 a.
$$400 \text{ cm} = \underline{\hspace{1cm}} \text{m}$$

1 b.
$$3,000 \text{ m} = ___ \text{km}$$

$$2 a. 700 cm = ___ m$$

3 a.
$$4,000 \text{ m} = \underline{\qquad} \text{ km}$$

3 b.
$$10 \text{ m} = \text{cm}$$

4 a.
$$100 \text{ cm} = \underline{\hspace{1cm}} \text{m}$$

4 b.
$$500 \text{ cm} = \underline{\hspace{1cm}} \text{m}$$

5 a.
$$3 \text{ m} = \underline{\hspace{1cm}} \text{ cm}$$

5 b.
$$1,000 \text{ m} = ___ \text{km}$$

6 a.
$$8 \text{ m} = \underline{\hspace{1cm}} \text{ cm}$$

6 b.
$$6 \text{ m} = \underline{\hspace{1cm}} \text{cm}$$

7 a.
$$9,000 \text{ m} = \underline{\hspace{1cm}} \text{km}$$

7 b.
$$200 \text{ cm} = \underline{\hspace{1cm}} \text{m}$$

8 a.
$$5 \text{ km} = \underline{\qquad} \text{ m}$$

8 b.
$$6,000 \text{ m} =$$
____ km

9 a.
$$2,000 \text{ m} = \text{km}$$

9 b.
$$900 \text{ cm} = \text{m}$$

10 a.
$$8,000 \text{ m} =$$
____ km

Name:	Date:
tanic	Datc

- **1 a.** 4 m
- **2 a.** 7 m
- 3 a. 4 km
- **4 a.** 1 m
- **5 a.** 300 cm
- 6 a. 800 cm
- **7 a.** 9 km
- **8 a.** 5,000 m
- **9 a.** 2 km
- **10 a.** 8 km

- **1 b.** 3 km
- **2 b.** 7 km
- 3 b. 1000 cm
- **4 b.** 5 m
- **5 b.** 1 km
- 6 b. 600 cm
- **7 b.** 2 m
- 8 b. 6 km
- **9 b.** 9 m
- **10 b.** 10,000 m

Name: _____ Date: _____

Measuring Units Worksheet

1 a.
$$7 \text{ cm} = \underline{\hspace{1cm}} \text{mm}$$

1 b.
$$50 \text{ mm} = ___ \text{ cm}$$

$$2 a. 400 cm = ___ m$$

3 a.
$$1000 \text{ cm} = \underline{\hspace{1cm}} \text{m}$$

3 b.
$$700 \text{ cm} = \underline{\hspace{1cm}} \text{m}$$

6 a.
$$6 \text{ m} = \underline{\hspace{1cm}} \text{cm}$$

6 b.
$$5 \text{ m} = \underline{\hspace{1cm}} \text{cm}$$

$$7 a. 2 m = cm$$

7 b.
$$800 \text{ cm} = \underline{\hspace{1cm}} \text{m}$$

8 a.
$$9 \text{ m} = \underline{} \text{ cm}$$

8 b.
$$3 \text{ m} = ___ \text{ cm}$$

$$9 a. 90 mm = cm$$

Name:	Date:
tanic	Datc

1 a.	70 mm	1 b.	5 cm
2 a.	4 m	2 b.	100 cm
3 a.	10 m	3 b.	7 m
4 a.	3 cm	4 b.	2 cm
5 a.	1 cm	5 b.	80 mm
6 a.	600 cm	6 b.	500 cm
7 a.	200 cm	7 b.	8 m
8 a.	900 cm	8 b.	300 cm
9 a.	9 cm	9 b.	100 mm
10 a.	40 mm	10 b.	6 cm

Name: ______ Date: _____

Measuring Units Worksheet

1 b.
$$10,000 \text{ m} = \underline{\hspace{1cm}} \text{km}$$

2 a.
$$4,000 \text{ m} = \underline{\hspace{1cm}} \text{km}$$

3 a.
$$7 \text{ km} = \underline{\qquad} \text{ m}$$

3 b.
$$5,000 \text{ m} = \text{km}$$

5 a.
$$9,000 \text{ m} =$$
____ km

6 a.
$$5,000 \text{ m} = \text{km}$$

6 b.
$$10,000 \text{ m} = \text{km}$$

$$7 a. 8 km = m$$

8 a.
$$1,000 \text{ m} =$$
____ km

8 b.
$$10,000 \text{ m} = \underline{\hspace{1cm}} \text{km}$$

9 a.
$$5,000 \text{ m} = \text{km}$$

9 b.
$$3 \text{ km} = \underline{\qquad} \text{ m}$$

10 a.
$$2,000 \text{ m} =$$
____ km

Name:	Date:
tanic	Datc

1 a.	1,000 m	1 b.	10 km
2 a.	4 km	2 b.	2,000 m
3 a.	7,000 m	3 b.	5 km
4 a.	3,000 m	4 b.	8,000 m
5 a.	9 km	5 b.	6,000 m
6 a.	5 km	6 b.	10 km
7 a.	8,000 m	7 b.	7,000 m
8 a.	1 km	8 b.	10 km
9 a.	5 km	9 b.	3,000 m
10 a.	2 km	10 b.	3,000 m