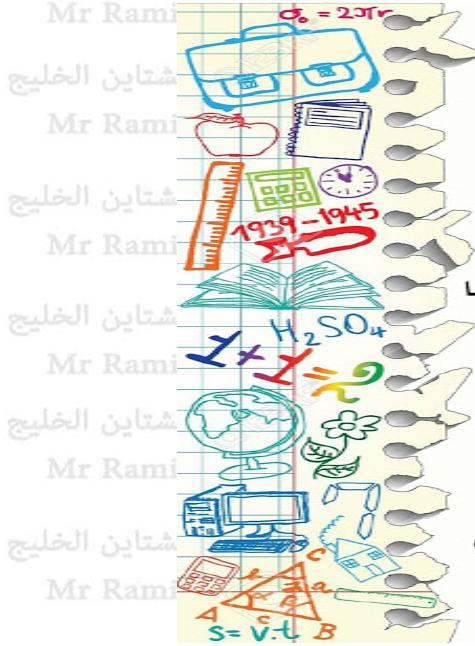


Mr Rami

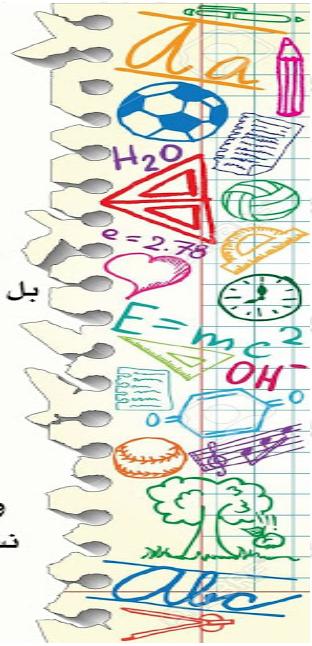

Mr Rami

Mr Rami

Mr Rami

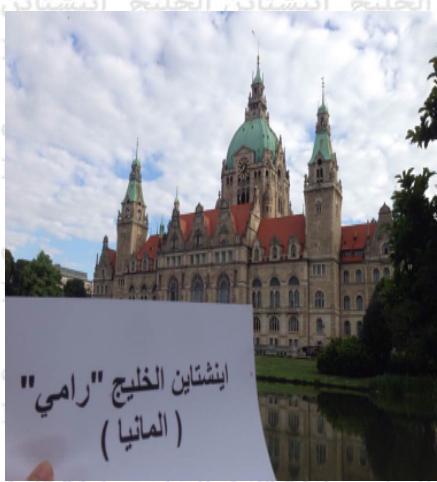
Mr Rami

Mr Rami



سلسلة أينشتاين الخليج في فيزياء

هدفنا أن نفجر طاقتنا الكامنة


لن نجعلها حبيسة في أعماقنا
بل سنبدل عليها شغلاً نقطع به
أكبر قدر من الإزاحة الممكنة في عالمنا
مرونتنا عالية لسنا جامدين في قاليب واحد

بل نتشكل كثوار بحسب الوسط الذي يجمعنا
تربطنا قوى تمسك عالية
تجعلنا نعمل كفريق واحد
ويعزمنا سنتغلب على قصورنا الذاتي
ولن نسمح لأي عامل أن يؤثر على إرادتنا
أو يقاوم طموحنا
ومهما بلغنا من نجاحات نبقى ضعفاء مالم
نستمد قوتنا وقدرتنا من رب الأرض والسموات

التفوق له عنوان

سلسلة أينشتاين الخليج في الفيزياء

Einstein Gulf

أسئلة مراجعة

Einstein Gulf

Einstein Gulf

أينشتاين الخليج أينشتاين الخليج
أينشتاين الخليج أينشتاين الخليج
أينشتاين الخليج أينشتاين الخليج

Mr Rami

Mr Rami

Mr Rami

Mr Rami

Mr Rami

Mr Rami

أينشتاين الخليج أينشتاين الخليج
أينشتاين الخليج أينشتاين الخليج

Mr Rami

أينشتاين الخليج أينشتاين الخليج
أينشتاين الخليج أينشتاين الخليج

Mr Rami

الخليل اينشتاين * كبسولات فنية طامة

Current and Resistance

1. In a certain circuit, the current as a function of time is given as:

$$i(t) = 3t^2 - 2t$$

where i is measured in millamps and t is measured in seconds. How much charge passes through this circuit during the interval $0 < t < 5.00$ s?

- A. 28.0 mC
- B. 65.0 mC
- C. 100 mC
- D. 150 mC

2. Which of the following statements are true regarding current density?

- I. It is the current flowing per unit area
- II. It is a vector quantity with a direction opposite to that of the negative charges
- III. Its SI unit is Am^{-1}

- A. I only
- B. II only
- C. I and II only
- D. I, II and III

3. A conductor carries a current of $50 \mu A$. If the area of cross-section of the conductor is $50 mm^2$, then value of the current density is ____.

- A. $10^{-6} Am^{-2}$
- B. $10^{-3} Am^{-2}$
- C. $0.5 Am^{-2}$
- D. $1.0 Am^{-2}$

4. Ohm's Law states that the potential difference across a device is equal to ____.

- A. the current flowing through the device times the resistance of the device
- B. the current flowing through the device divided by the resistance of the device
- C. the resistance of the device divided by the current flowing through the device
- D. the current flowing through the device times the cross-sectional area of the device

5. Which of the following are the correct units for conductance and conductivity?

Conductance	Conductivity
A. Siemens (S)	$(\Omega m)^{-1}$
B. Ohms (Ω)	Ωm
C. Ωm	Ohms (Ω)
D. $(\Omega m)^{-1}$	Siemens (S)

6. A potential difference of $2.0 V$ is applied across a wire of cross sectional area $2.5 mm^2$. The current which passes through the wire is $3.2 \times 10^{-3} A$. What is the resistance of the wire?

- A. $2.8 \times 10^2 \Omega$
- B. $3.6 \times 10^2 \Omega$
- C. $4.2 \times 10^2 \Omega$
- D. $6.3 \times 10^2 \Omega$

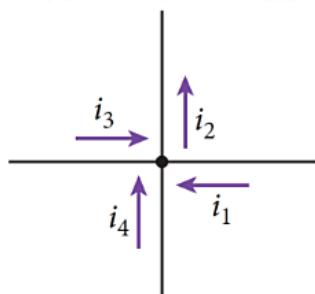
9. A particular wire has a diameter of 1.7 mm and length of 1.3 m. If its resistance is 15 mΩ, what is the resistivity of the metal from which it is made?

الخلج اينشتاين الخلج اينشتاين الخلج A. $1.0 \times 10^{-7} \Omega m$

A. $1.0 \times 10^{-7} \Omega m$
B. $2.6 \times 10^{-8} \Omega m$
C. $4.4 \times 10^{-6} \Omega m$
D. $1.8 \times 10^{-5} \Omega m$

10. A 20 cm long and 1.0 mm diameter thick copper wire of resistivity $1.7 \times 10^{-8} \Omega\text{m}$ is connected across a 3.0 V battery. The current through the wire is _____.

الخليج اينشتاين الخليج اينشتاين الخليج


A. 7.00 A Mr Rami Mr Rami Mr Rami

B. 125 A Mr Rami Mr Rami Mr Rami

C. 693 A Mr Rami Mr Rami Mr Rami

D. 789 A Mr Rami Mr Rami Mr Rami

5. For the junction shown in the figure, which equation correctly expresses the sum of the currents?

$$\text{الخليج} \quad \text{اينشتاين صحيح} \quad \text{اينشتاين صحيح} \quad \text{اينشتاين صحيح}$$

Mr Rami Mr Rami Mr Rami Mr Rami

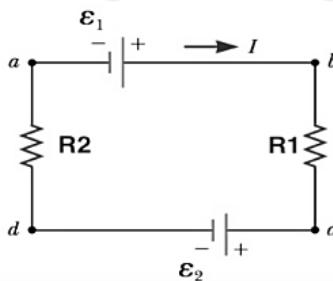
A. $i_1 + i_2 + i_3 + i_4 = 0$

$$\text{الخليج} \quad \text{أينشتاين الخليج} \quad B. \quad i_1 - i_2 + i_3 + i_4 = 0$$

$$\text{Mr Rami} \quad C. \quad -i_1 + i_2 + i_3 - i_4 = 0 \quad \text{Mr Rami} \quad \text{Mr}$$

الخليج اينشتاين الخليج $i_1 - i_2 + i_3 - i_4 = 0$ دين الخليج

الخليج انشتاتن الخليج انشتاتن الخليج انشتاتن


1. Kirchhoff's junction rule is an example of _____.

- A. conservation of energy
- B. conservation of charge
- C. conservation of mass
- D. conservation of potential

2. Kirchhoff's loop rule is an example of .

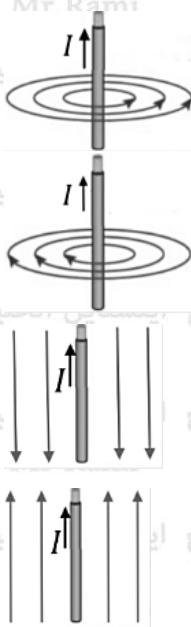
- A. conservation of energy
- B. conservation of charge
- C. conservation of mass
- D. conservation of potential

7. Which of the following equations represent the current I in the circuit below.

$$A. I = \frac{\varepsilon_1 - \varepsilon_2}{R_1 + R_2}$$

$$\text{B. } I = \frac{\varepsilon_1 + \varepsilon_2}{R_1 + R_2}$$

$$C. \quad I = \frac{\varepsilon_1 - \varepsilon_2}{R_1 - R_2} \quad \text{Mr Rami} \quad \text{Mr Rami}$$


$$D. Ra = \frac{\epsilon_1 + \epsilon_2}{R_1 - R_2} \quad \text{Mr Rami}$$

الذى يريد العلامة الكاملة لا يحتاج ان يدرس كثيراً بل يحتاج ان يدقق ويفهم كثيراً .

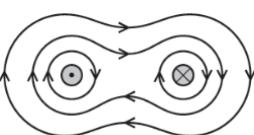
* كبسولات فنية هامة أينشتاين الخليج

2. A long straight wire carries a current I . Which of the following is a correct representation of the magnetic field lines due to the current in the wire?

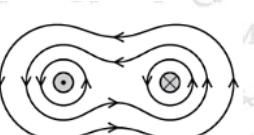
3. The Biot-Savart Law in its differential form is _____.

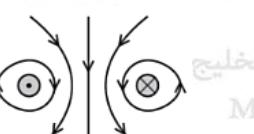
A. $d\vec{B} = \frac{\mu_0}{4\pi} \frac{I(d\vec{l} \times \hat{r})}{r^2}$

B. $d\vec{B} = \frac{\mu_0}{4\pi} \frac{I(d\vec{l} \times \hat{r})}{r}$


C. $d\vec{I} = \frac{\mu_0}{4\pi} \frac{B(d\vec{B} \times \hat{r})}{r^2}$

D. $d\vec{l} = \frac{\mu_0}{4\pi} \frac{B(d\vec{B} \times \hat{r})}{r}$

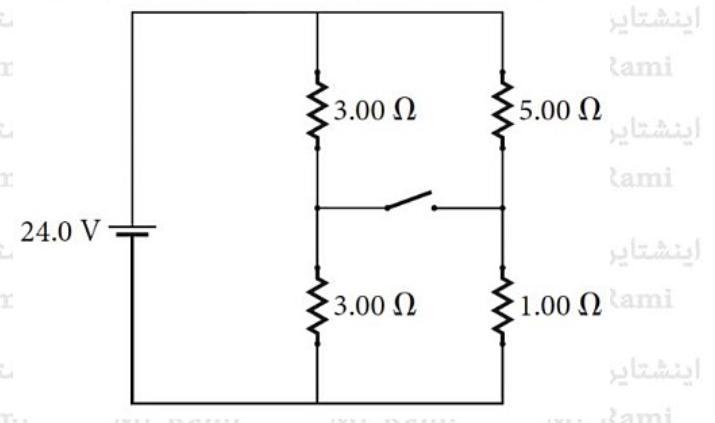

7. Two long, straight wires hang vertically, close to each other. The wires carry currents in opposite directions as shown below.



Which diagram shows the magnetic field pattern around the wires?

A.

B.

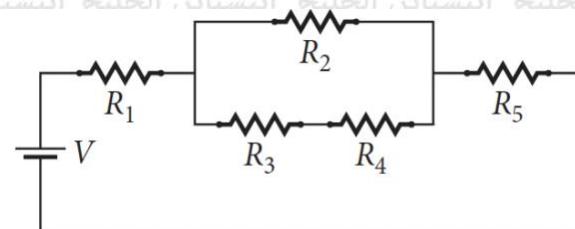

C.

D.

* كبسولات فنية هامة أينشتاين الخليج

11. The figure below shows a circuit with four resistors.

a. What is the equivalent resistance of the circuit when the switch is open?



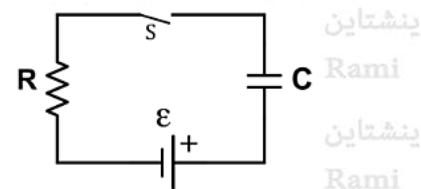
b. What is the current in the circuit when the switch is open?

c. What is the equivalent resistance of the circuit when the switch is closed?

d. What is the current in the circuit when the switch is closed?

12. For the circuit shown in the figure, $R_1 = 6.00 \Omega$, $R_2 = 6.00 \Omega$, $R_3 = 2.00 \Omega$, $R_4 = 4.00 \Omega$, $R_5 = 3.00 \Omega$, and the potential difference is 12.0 V.

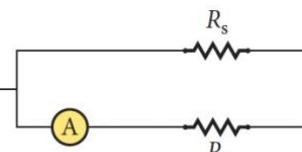
a. What is the equivalent resistance for the circuit?


b. What is the current through R_5 ?

c. What is the potential drop across R_3 ?

الذي يريد العلامة الكاملة لا يحتاج ان يدرس كثيراً بل يحتاج ان يدقق ويفهم كثيراً.

* كبسولات فنية هامة أينشتاين الخليج


5. Consider a series RC circuit for which $R = 1.0 \text{ M}\Omega$, $C = 5.0 \mu\text{F}$, and $\mathcal{E} = 30 \text{ V}$ as in the figure below.

a. Find the time constant of the circuit.

b. Find the charge on the capacitor 10 s after the switch is closed.

4. An ammeter produces a full-scale reading when a current of $i_{int} = 5.10 \text{ mA}$ passes through it. The ammeter has an internal resistance of $R_i = 16.8 \Omega$. To use this ammeter to measure a maximum current of $i_{max} = 20.2 \text{ A}$, what should be the resistance of the shunt resistor, R_s , connected in parallel with the ammeter?

(Note: do not round off the numbers in the steps while calculating as the shunt value is very small)

2. A laboratory electromagnet produces a magnetic field of magnitude 1.50 T . A proton moves through this field with a speed of $6.00 \times 10^6 \text{ m/s}$.

a. Find the magnitude of the maximum magnetic force that could be exerted on the proton.

إينشتاين الخليج إينشتاين الخليج إينشتاين الخليج إينشتاين الخليج إينشتاين الخليج إينشتاين الخليج

Mr Rami Mr Rami Mr Rami Mr Rami Mr Rami Mr Rami Mr Rami

إينشتاين الخليج إينشتاين الخليج إينشتاين الخليج إينشتاين الخليج إينشتاين الخليج إينشتاين الخليج

Mr Rami Mr Rami Mr Rami Mr Rami Mr Rami Mr Rami Mr Rami

إينشتاين الخليج إينشتاين الخليج إينشتاين الخليج إينشتاين الخليج إينشتاين الخليج إينشتاين الخليج

Mr Rami Mr Rami Mr Rami Mr Rami Mr Rami Mr Rami

إينشتاين الخليج إينشتاين الخليج إينشتاين الخليج إينشتاين الخليج إينشتاين الخليج إينشتاين الخليج

Mr Rami Mr Rami Mr Rami Mr Rami Mr Rami Mr Rami

* كبسولات فنية هامة أينشتاين الخليج

2. A negatively charged particle enters perpendicularly into a region of uniform magnetic field of strength 1.5 T at a constant speed of $7.4 \times 10^5 \text{ m/s}$. It experiences a magnetic force of $1.8 \times 10^{-13} \text{ N}$.

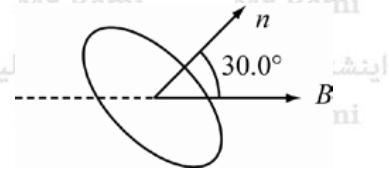
$$v = 7.4 \times 10^5 \text{ m/s}$$

$$q \rightarrow$$

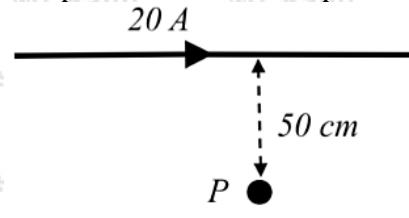
$$B = 1.5 \text{ T}$$

a. What is the direction of the magnetic force on the charge as it enters the magnetic field?

b. What is the magnitude of the charge on the particle?


c. What is the work done on the charge by the magnetic force? Explain your answer.

3. A particle of net charge $3.2 \times 10^{-19} \text{ C}$ is moving in a circular orbit of radius 21 cm in a uniform 0.30 T magnetic field perpendicular to the velocity of the electron. If the speed of the particle is $2.0 \times 10^6 \text{ m/s}$, what is the mass of the particle?


4. A straight wire of length 2.00 m carries a current of 24.0 A. It is placed on a horizontal tabletop in a uniform horizontal magnetic field. The wire makes an angle of 30.0° with the magnetic field lines. If the magnitude of the force on the wire is 0.500 N, what is the magnitude of the magnetic field?

كبشاتين الخليج أينشتاين فنيه هاون

8. A circular coil with a radius of 10.0 cm has 100 turns of wire and carries a current, $I = 1.00\text{ mA}$. It is free to rotate in a region with a constant horizontal magnetic field given by $B = (0.0100\text{ T})\hat{x}$. If the unit normal vector to the plane of the coil makes an angle of 30.0° with the horizontal, what is the magnitude of the net torque acting on the coil?

3. A wire carries a current of 20 A and is placed 50 cm from a point P as shown in the figure below.

a. Calculate the magnitude of the magnetic field strength at point P , due to the current in the wire.

b. What is the direction of the magnetic field at the point P?

c. What is the magnitude of the magnetic field at a point \mathbf{P}' which is at a distance four times that of \mathbf{P} from the wire?

النجاح ليس عدم فعل الأخطاء

لنجاح هو عدم تكرار الأخطاء

أستاذ رامي عبد الفتاح

MR KAMI
0503198165