

Academic Year	2023/2024
العام الدراسي	
Term	1
الفصل	
Subject	Biology C-INSPIRE
المادة	بيولوجي - انسبر
Grade	11
الصف	
Stream	Advanced
المسار	المتقدم
Number of MCQ	20
عدد الأسئلة الموضوعية	
Marks of MCQ	5
درجة الأسئلة الموضوعية	
Type of All Questions	MCQ/الأسئلة الموضوعية
نوع كافة الأسئلة	
Maximum Overall Grade	100
الدرجة المقصودة الممكنة	
Exam Duration -	120 minutes
مدة الامتحان -	
Mode of Implementation	SwiftAssess
طريقة التطبيق	
Calculator	Allowed
الآلة الحاسبة	سموحة

Question*	Learning Outcome/Performance Criteria**	Lesson	Reference(s) in the Student Book (Aldiwan Version)	
			المراجع في كتاب الطالب (نسخة المدون)	الصفحة
السؤال*	نتائج التعلم / معايير الأداء**	الدرس	مثال/تشريح / ملخص	الصفحة
1	BIO.3.3.02.012- Use the Punnett square method to solve basic genetics problems involving monohybrid crosses, incomplete dominance, codominance, dihybrid crosses, and sex-linked genes.	U3M10L1	Figure 5	page 9
2	BIO.3.3.02.012- Use the Punnett square method to solve basic genetics problems involving monohybrid crosses, incomplete dominance, codominance, dihybrid crosses, and sex-linked genes.	U3M10L1	Figure 8	page 10
3	BIO.3.1.03.038 - Explain the phases of meiosis in terms of cell division, the movement of chromosomes, and crossing over of genetic material.	U3M10L2		page 12
4	BIO.3.3.01.036 - Investigate that variations of inherited traits between parent and offspring arise from genetic differences that result either from the subset of chromosomes and therefore from inherited genes or rarely from mutations and show the variations of inherited traits in a pedigree.	U3M10L2	Figure 10	page 12
5	BIO.3.2.04.010 - Explain that in artificial selection, humans have the capacity to influence certain characteristics of organisms through selective breeding.	U3M10L3		page 15
6	BIO.3.2.04.010 - Explain that in artificial selection, humans have the capacity to influence certain characteristics of organisms through selective breeding.	U3M10L3		page 16
7	BIO.3.3.01.036 - investigate that variations of inherited traits between parent and offspring arise from genetic differences that result either from the subset of chromosomes and therefore from inherited genes or rarely from mutations and show the variations of inherited traits in a pedigree.	U3M10L4	Table 2, 3	page 21, 22, 23
8	BIO.3.3.02.011 - Explain the concepts of genotype, phenotype, dominance, incomplete dominance, codominance, recessiveness, and sex linkage according to Mendelian laws of inheritance.	U3M10L4		page 19, 20
9	BIO.3.3.02.020 - Apply concepts of statistics and probability to explain the variation and distribution of expressed traits in a population.	U3M10L5		page 31
10	BIO.3.3.02.012 - Use the Punnett square method to solve basic genetics problems involving monohybrid crosses, incomplete dominance, codominance, dihybrid crosses, and sex-linked genes.	U3M10L5	Figure 18	page 25
11	BIO.3.3.01.036 - investigate that variations of inherited traits between parent and offspring arise from genetic differences that result either from the subset of chromosomes and therefore from inherited genes or rarely from mutations and show the variations of inherited traits in a pedigree. BIO.3.3.02.012 - Use the Punnett square method to solve basic genetics problems involving monohybrid crosses, incomplete dominance, codominance, dihybrid crosses, and sex-linked genes.	U3M10L5		page 27, 32
12	BIO.3.3.01.023 - Identify examples, using information collected from printed and electronic resources, of the qualities that depend on the amount of protein produced, which in turn depends on the number of copies of a specific version of the gene, and predict to explain how the imbalance of the lack or presence of one copy or two copies of a specific version of the gene may affect the expression of a particular trait.	U3M10L5		page 28, 30
13	BIO.3.3.01.012 - Analyze a simulated strand of DNA to determine the genetic code and base pairing of DNA.	U3M11L1		page 42, 43
14	BIO.3.3.01.012 - Analyze a simulated strand of DNA to determine the genetic code and base pairing of DNA.	U3M11L1	Figure 7	page 46
15	BIO.3.3.01.012 - Analyze a simulated strand of DNA to determine the genetic code and base pairing of DNA.	U3M11L1		page 46
16	BIO.3.3.01.016 - Explain the current model of DNA replication and describe the different repair mechanisms that can correct mistakes in DNA sequencing including the mechanisms of biotechnology and bioinformatics.	U3M11L2	Figure 10	page 50
17	BIO.3.3.01.016 - Explain the current model of DNA replication and describe the different repair mechanisms that can correct mistakes in DNA sequencing including the mechanisms of biotechnology and bioinformatics.	U3M11L2		page 50
18	BIO.3.3.01.016 - Explain the current model of DNA replication and describe the different repair mechanisms that can correct mistakes in DNA sequencing including the mechanisms of biotechnology and bioinformatics.	U3M11L2		page 50
19	BIO.3.3.01.015 - Conclude that each distinct gene chiefly controls the production of a specific protein, which in turn affects the traits of the individual.	U3M11L3	Figure 15	page 58
20	BIO.3.3.01.009 - Construct an explanation based on evidence for how the structure of DNA determines the structure of proteins which carry out the essential functions of life through systems of specialized cells	U3M11L3	Figure 14	page 56

* Questions might appear in a different order in the actual exam, or on the exam paper in the case of G3 and G4.

قد تظهر الأسئلة بترتيب مختلف في الامتحان الفعلي، أو على ورقة الامتحان في حالة الصفين G3 و G4.

** As it appears in the textbook, LMS, and (Main_IP).

كما وردت في كتاب الطالب و LMS والخططة الفصلية.