

UNITED ARAB EMIRATES
MINISTRY OF EDUCATION

YEAR OF
ZAYED

2018 - 2019

McGraw-Hill Education
Advanced Science
Program

United Arab Emirates Edition

6

Activity Lab Manual

Answer Key

McGraw-Hill Education
**Advanced Science
Program**

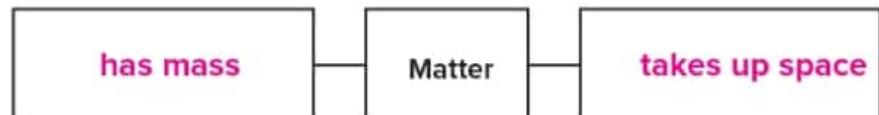
United Arab Emirates Edition

GRADE 6 • VOLUME 2

**Activity Lab
Manual**

Brief Contents

- Chapter 1: Methods of Science**
- Chapter 3: Energy and Energy Transformations**
- Chapter 4: Waves, Light, and Sound**
- Chapter 5: Electricity and Magnetism**
- Chapter 6: Matter and Atoms**
- Chapter 7: Matter: Properties and Changes**
- Chapter 8: Life's Classification and Structure**
- Chapter 9: Inheritance and Adaptations**
- Chapter 10: Introduction to Plants**
- Chapter 11: Interactions of Life**
- Chapter 12: Mapping Earth**
- Chapter 13: Earth in Space**
- Chapter 14: Our Planet - Earth**
- Chapter 15: Natural Resources**

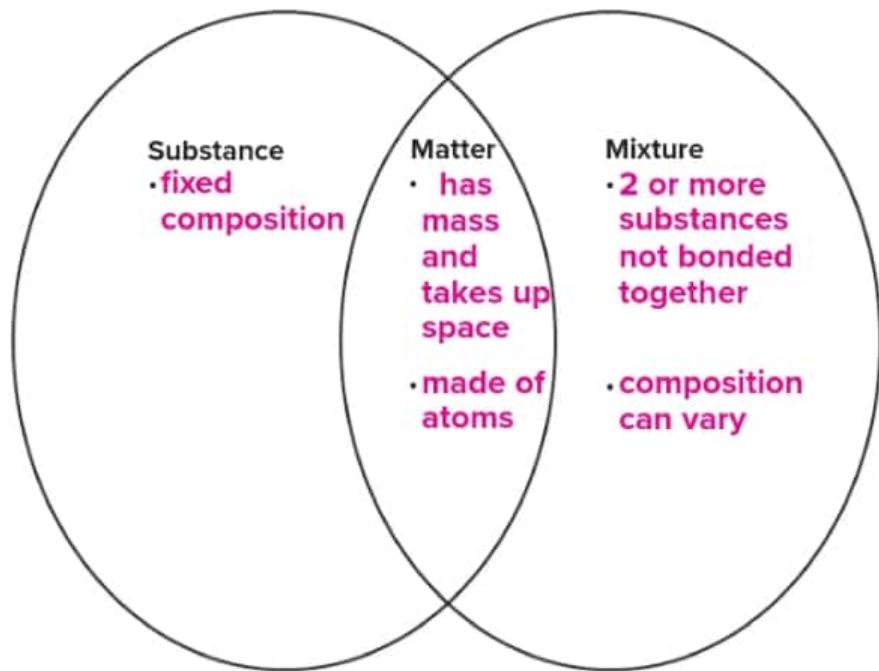

Lesson 1 Substances and Mixtures

Skim Lesson 1 in your book. Read the headings and look at the photos and illustrations. Select three things you want to learn more about as you read the lesson. Write your ideas in your Science Journal.

Main Idea

What is matter?

Identify the defining characteristics of matter.


What is matter made of?

Characterize atoms.

Classifying Matter

Differentiate classifications of matter.

Lesson 1 Substances and Mixtures (continued)

Main Idea

What is a substance?

Details

 Differentiate building blocks of matter.

Matter	Description
Atom	building block of all matter
Substance	matter with a composition that is always the same
Element	a substance made of only one kind of atom
Molecule	two or more atoms held together by chemical bonds
Compound	a substance made of two or more elements chemically joined in a specific way

Determine whether each statement is true or false. Write T for true statements. For false statements, write F and then rewrite the underlined word(s) to make the statement true.

Statement	T/F	Corrections
1. <u>Molecules</u> are made of atoms of one type.	F	Elements
2. All <u>substances</u> are elements.	F	elements, substances
3. All <u>compounds</u> are substances.	T	
4. All elements are compounds.	F	No
5. All matter is made up of <u>molecules</u> .	F	atoms

Express the relationship between properties of a compound and the properties of the elements which compose the compound.

The properties are usually different.

Lesson 1 Substances and Mixtures (continued)

Main Idea

Details

What is a mixture?

Differentiate between substances and mixtures.

Substance
definite composition

Mixture
can vary in composition

Types of Mixtures

Categorize information about mixtures.

Mixtures
can be any state of matter

Which state of matter?

homogeneous

Two
types

heterogeneous

Prefix:**homo-**
Means:**the same**

Prefix:**hetero-**
Means:**different**

Contrast the ways homogeneous mixtures and heterogeneous mixtures are combined.

Mixture	Contrasting Characteristic
Heterogeneous	Substances are not evenly mixed.
Homogeneous	Substances are evenly mixed but not bonded together.

Organize information about solutions.

Solution
Another name for **homogeneous mixture**

Part: **solvent**
Definition: **the substance present in the largest amount**

Part: **solute**
Definition: **dissolves and mixes evenly in the solvent**

Lesson 1 Substances and Mixtures (continued)

Main Idea

Details

 Assess whether all mixtures are solutions.

No, heterogeneous mixtures are not solutions.

Compounds v. Mixtures

 Compare and contrast solutions and compounds.

Detail	Solution	Compound
Appearance	evenly mixed	evenly mixed
Composition	can vary	fixed
Atoms bonded?	no	yes
Properties	keeps properties of its parts	different properties from its elements
Changing the composition	maintains similar properties	makes a new compound

Identify ways to separate mixtures.

Type of Mixture	Possible Techniques
Heterogeneous	remove physically, such as by hand or with a strainer
Homogeneous	boiling or evaporation

Visualizing Classification of Matter

Cite two key factors in the classification of matter.

1. type of atoms

2. arrangement of atoms

 Connect It Identify an element, a substance, a compound, a heterogeneous mixture, and solution that you have encountered recently.

Accept all reasonable responses. Sample answer: My mom's gold earrings are an element and a substance; water is a compound (but the water that comes out of my tap is a solution of water and other substances); the raisin bran I ate for breakfast was a heterogeneous mixture.

Lesson 2 The Structure of Atoms (continued)

Main Idea

The Size of Atoms

Express the exponent in the relative comparison between the sizes of an atom and the earth.

16

Size of Earth = Size of atom $\times 10^{16}$

Differences in Atoms

Relate the atomic number of an atom to the number of protons in the atom's nucleus.

They are the same.

Differentiate ions from isotopes of atoms.

Isotopes
Two atoms of the same element with
• the same number of protons
• but different numbers of neutrons

Ions
Atoms of an element that have a charge because they have
• lost

Atoms and Matter

Assess changes to an atom caused by changing its number of particles.

Change	Result
Add or lose a proton	new element
Add a neutron	isotope
Add or lose an electron	ion

Connect It The fairytale *Rumpelstiltskin* tells about a little man who can spin ordinary straw into gold. How would Rumpelstiltskin have to recombine the atomic particles in the straw to achieve his magical feat?

Accept all reasonable responses. Sample answer: Atoms in the straw would have to be broken apart and put back together with 79 protons in each new atom.

Lesson 2 The Structure of Atoms (continued)

Main Idea

The Size of Atoms

Express the exponent in the relative comparison between the sizes of an atom and the earth.

$$\text{Size of Earth} = \text{Size of atom} \times 10^{16}$$

Differences in Atoms

Relate the atomic number of an atom to the number of protons in the atom's nucleus.

They are the same.

Differentiate ions from isotopes of atoms.

Isotopes
Two atoms of the same element with
• the same number of protons
• but different numbers of neutrons

Ions
Atoms of an element that have a charge because they have
• lost
• or gained
electrons

Atoms and Matter

Assess changes to an atom caused by changing its number of particles.

Change	Result
Add or lose a proton	new element
Add a neutron	isotope
Add or lose an electron	ion

Connect It The fairytale *Rumpelstiltskin* tells about a little man who can spin ordinary straw into gold. How would Rumpelstiltskin have to recombine the atomic particles in the straw to achieve his magical feat?

Accept all reasonable responses. Sample answer: Atoms in the straw would have to be broken apart and put back together with 79 protons in each new atom.

Chapter Wrap-Up

Now that you have read the chapter, think about what you have learned. Complete the final column in the chart on the first page of the chapter.

Use this checklist to help you study.

- Study your *Activity Lab Manual* on this chapter.
- Study the definitions of vocabulary words.
- Reread the chapter, and review the charts, graphs, and illustrations.
- Review the Understanding Key Concepts at the end of each lesson.
- Look over the Chapter Review at the end of the chapter.

Summarize It Reread the chapter Big Idea and the lesson Key Concepts. Summarize how the composition of the atoms of elements, as shown on the periodic table, relates to the many ways matter is categorized.

Accept all reasonable responses. Sample answer: The number of different particles in atoms determine the identity of elements. Each element exhibits its own properties. In mixtures of elements, the elements are only physically combined, so they maintain their properties. But in compounds, the chemical bonding of elements changes the matter into something with new properties. Matter is categorized by the atoms that make it up and by how those atoms are combined, chemically or physically.

Challenge Choose a pure form of matter, an element, to analyze. Research to learn out about the element's atoms, isotopes, and ions. Find out what kinds of compounds, solutions, or mixtures the element occurs in and how they are used. Make a poster about your element, and display it in your class.

Chapter 7 - Matter: Properties and Changes

What gives a substance its unique identity?

Before You Read

Before you read the chapter, think about what you know about matter. Record your thoughts in the first column. Pair with a partner, and discuss his or her thoughts. Record those thoughts in the second column. Then record what you both would like to share with the class in the third column.

Think	Pair	Share

Chapter Vocabulary

Lesson 1	Lesson 2
NEW volume solid liquid gas physical property mass density solubility chemical property	NEW physical change chemical change law of conservation of mass ACADEMIC expose
REVIEW matter	

A Lesson Content Vocabulary page for each lesson is provided in the Chapter Resources File.

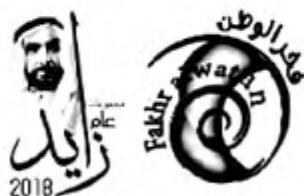
Lesson 1 Matter and Its Properties

Skim Lesson 1 in your book. Read the headings, and look at the photos and illustrations. Identify three things you want to learn more about as you read the lesson. Write your ideas in your Science Journal.

Main Idea

What is matter?

Sample answers shown.


Details

Identify three things that are matter and three things that are not matter. Then tell what all matter has in common.

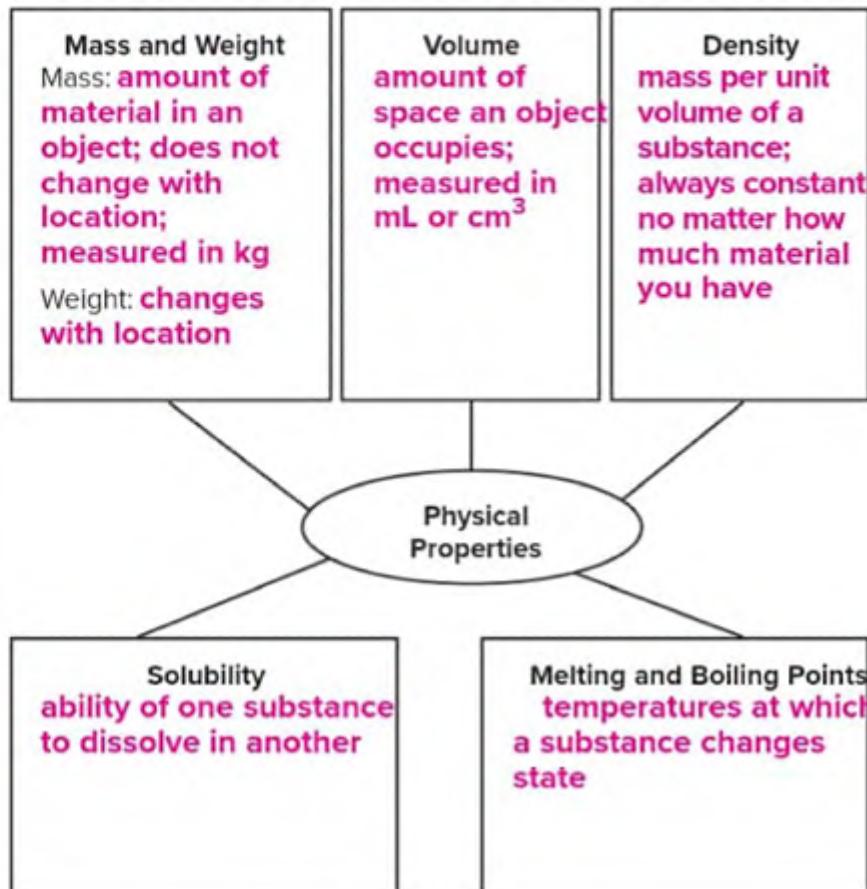
Matter	Not Matter
chair, air, table, water	light, sound, shadows

All matter **has mass and takes up space.**

States of Matter

Summarize information about the 3 familiar states of matter by completing the chart.

	Solid	Liquid	Gas
Shape	definite	not definite; takes the shape of its container	no definite shape; fills container
Volume	definite	definite	not definite; fills its container
Space between particles	close together	close together	very far apart
Strength of attraction between particles	very strong	weaker than between particles of solids; stronger than between particles of gases	very weak
How particles move	vibrate in all directions	freely move past one another	freely move in all directions


Lesson 1 Matter and Its Properties (continued)

Main Idea

What are physical properties?

Details

Create a spider map to describe the physical properties of matter.

What are chemical properties?

Distinguish properties as chemical or physical. Circle the chemical properties. Underline the physical properties. Then tell how physical properties are different from chemical properties.

ability to be bent or rolled

ability to be attracted to a magnet

ability to rust

ability to burn

ability to conduct electricity

ability to react with oxygen

You can observe physical properties without changing the identity of the substances that make up a substance. You can observe chemical properties only as a substance reacts with or changes into a different substance.

Lesson 1 Matter and Its Properties (continued)

Main Idea

Identifying Matter Using Physical Properties

Identify properties that are useful for identifying unknown substances. You might need to refer to the section on physical properties for help.

1. **density**
2. **solubility**
3. **boiling point**
4. **melting point**

Sorting Materials Using Properties and Separating Mixtures Using Physical Properties

Classify methods for sorting materials and separating mixtures. For each material, choose the physical property below that would be most useful for separating the parts.

magnetism
state of matter
solubility

Pasta and water: **state of matter**

Sugar and salt in water: **solubility**

Metal and plastic beads: **magnetism**

Connect It Imagine that you can see the particles of ice, liquid water, and water vapor. Describe how these three states of water differ.

Sample answer: Water as a solid (ice) has a fixed shape and volume. The particles of ice are held closely together by strong, attractive forces. The particles vibrate in all directions. Liquid water has a fixed volume; however, it does not have a fixed shape—it takes the shape of its container. Its particles are still close together, but the attractive forces between these particles are weaker than in solid ice. For this reason, the particles move freely past one another. Water vapor has neither a fixed shape nor a fixed volume. The particles are far apart and have very weak attractive forces between them. For this reason, the particles move freely.

Lesson 2 Matter and Its Changes

ScanLesson 2 in your book. Write three questions you have about changes in matter in your Science Journal. Try to answer your questions as you read.

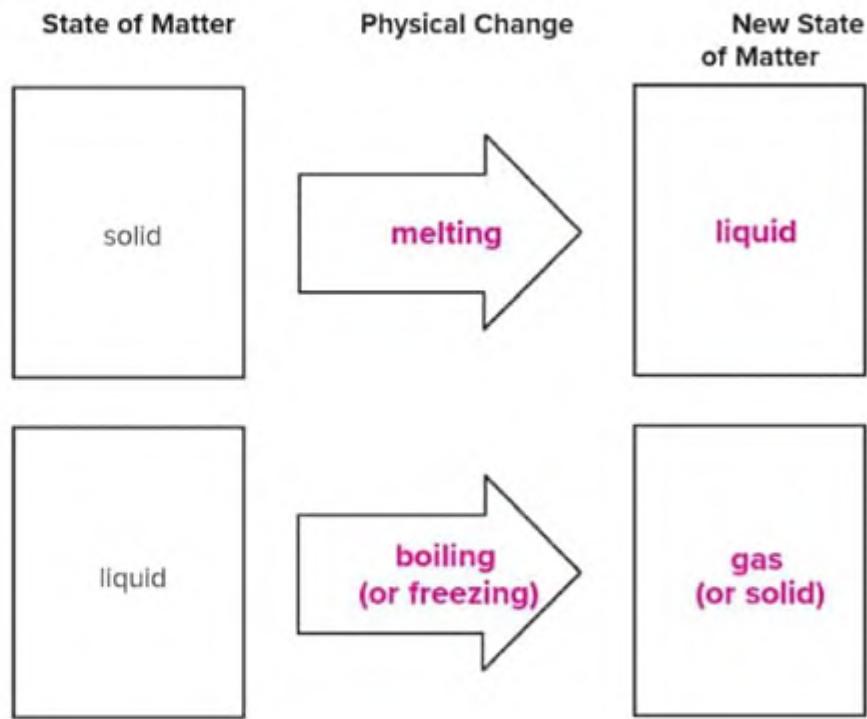
Main Idea

Changes of Matter

What are physical changes?

Details

Give an example of a change in matter you observe from the time you wake in the morning until you arrive at school.


Accept all reasonable responses. Students might describe steam (water vapor) filling the room as they shower, changes to an egg as it cooks or cereal as it soaks in milk, changes in air temperature between the inside and the outside of the house, and so on.

Classify physical changes. List two physical changes in which the identity of a substance stays the same.

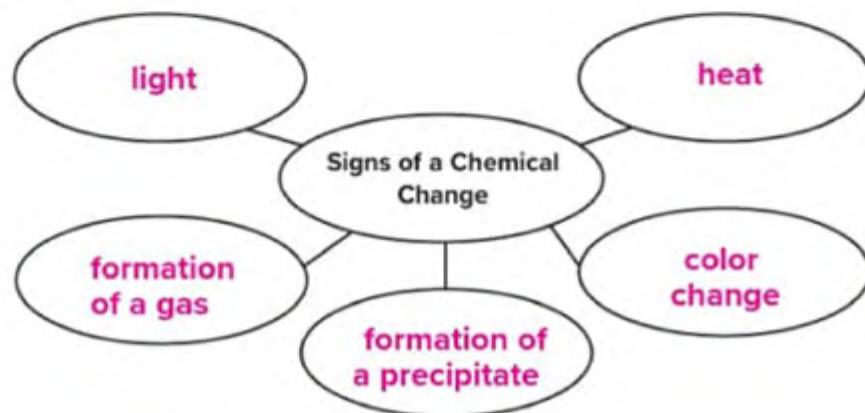
1. **dissolving**

2. **changing state**

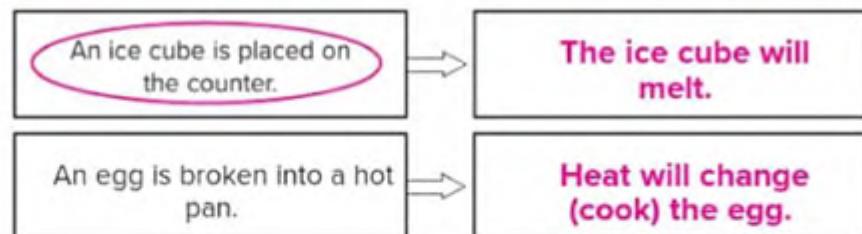
Organize the examples of physical changes to states of matter by completing the chart.

Lesson 2 Matter and Its Changes (continued)

Main Idea


What are chemical changes?

Details


Key Explain how chemical changes are different from physical changes.

A chemical change produces new substances with different chemical and physical properties. A physical change results only in changes to physical properties—the substance itself does not change.

Complete the graphic organizer below with five signs of a chemical change.

Predict the effect of each event. Circle the effect that can be reversed.

State the law of conservation of mass.

The total mass before a chemical reaction is the same as the total mass after the chemical reaction.

Key Describe how physical and chemical changes affect mass.

Physical changes: do not affect mass

Chemical changes: do not affect mass

Lesson 2 Matter and Its Changes (continued)

Main Idea

Comparing Physical and Chemical Changes

Sample answers are shown.

Details

Classify changes. Identify five types of physical changes and five types of chemical changes.

Physical Changes	Chemical Changes
melting	changing color
boiling	burning
changing shape	rusting
mixing	forming a gas
dissolving	forming a precipitate

 Compare and contrast information about physical changes and chemical changes.

Physical Changes	Chemical Changes
• substance <u>stays the same</u>	• <u>different</u> substance formed
• only <u>physical properties</u> change	• both <u>physical and chemical properties</u> change

 Analyze It A classmate shows you the remnants of a campfire. He tries to convince you that the ashes in the fire pit are all that remains of the wood that burned. What can you tell your friend about chemical changes that will help him understand what happened to the matter that made up the wood?

Sample answer: The burning wood released gases and other particulates in the form of smoke in addition to the ashes. If these materials could be captured, they, along with the ashes, would have the same mass as the wood before burning.

Chapter Wrap-Up

Now that you have read the chapter, think about what you have learned.

Use this checklist to help you study.

- Study your *Activity Lab Manual* on this chapter.
- Study the definitions of vocabulary words.
- Reread the chapter, and review the charts, graphs, and illustrations.
- Review the Understanding Key Concepts at the end of each lesson.
- Look over the Chapter Review at the end of the chapter.

Summarize It Review the Big Idea and the lesson Key Concepts. Imagine that you have an unknown substance. Explain how you could use physical and chemical properties to identify the substance.

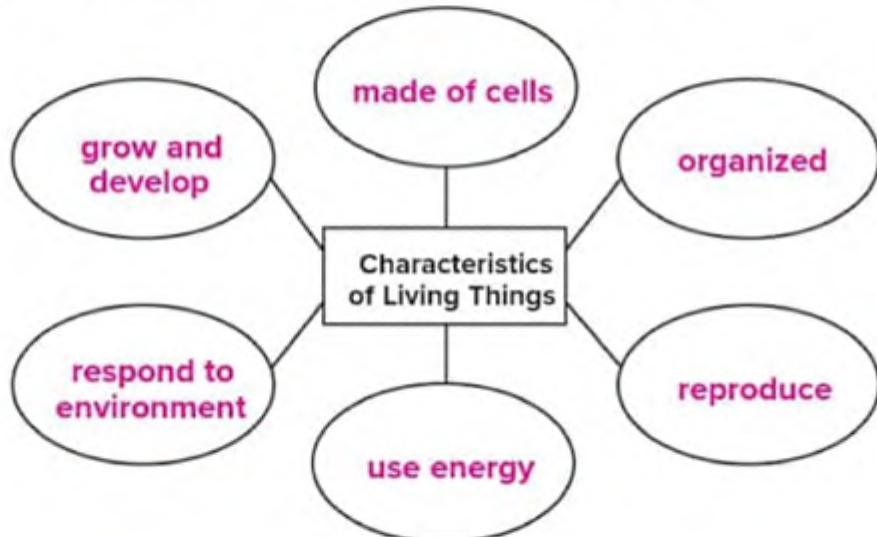
Accept all reasonable responses. Students should explain that a substance has a unique set of physical and chemical properties. They should then identify physical and chemical properties that are useful in identification. Physical properties of this type include density, solubility, melting point, boiling point, ability to conduct electricity, and magnetism. Chemical properties that could be used include reactivity and flammability.

Challenge Work with a partner to design a way to prove the law of conservation of mass when a physical change occurs. Share your design with the class.

Lesson 1 Classifying Living Things

Skim Lesson 1 in your book. Read the headings and look at the photos and illustrations. Identify three things you want to learn more about as you read the lesson. Record your ideas in your Science Journal.

Main Idea


What are living things?

Students might list other characteristics.

Details

 Identify the 6 characteristics of living things.

Recall the 4 macromolecules in cells.

1. nucleic acids	3. lipids
2. proteins	4. carbohydrates

Differentiate unicellular from multicellular organisms.

	Definition	Sample Characteristics
Unicellular	made up of only one cell	most abundant life forms; oldest forms of life; have everything they need to survive inside single cell
Multicellular	made of more than one cell	have different cells that carry out specialized functions; different levels of organization

Lesson 1 | Classifying Living Things (continued)

Main Idea

Sample examples are shown.

Details

Describe ways in which living things perform functions.

Function	Description
Grow	Unicellular organism: size of cell increases Multicellular organism: number of cells increase
Develop	Example: Ladybug larvae grow into pupae and then adults.
Reproduce	Asexual reproduction: Unicellular organisms divide; some multicellular organisms also reproduce asexually. Sexual reproduction: Reproductive cells of parent organisms join and form a new organism.
Use energy	Autotrophs: convert light or energy released by chemical reactions to usable energy Heterotrophs: obtain energy from other organisms
Respond to stimuli	Example: An octopus responds to predators by releasing ink to protect itself.

What do living things need?

Identify three things that organisms need to obtain from their habitats.

1. **energy (food)**
2. **water**
3. **a place to live (shelter or protection)**

Lesson 1 | Classifying Living Things (continued)

Main Idea

Details

Define habitat.

Habitat: a specific environment where an organism lives

How are living things classified?

 Order *8 taxonomic groups from largest to smallest.*

Taxonomic Groups	
Largest	Order
Domain	Family
Kingdom	Genus
Phylum	Species
Class	Smallest

 Relate *a taxon to binomial nomenclature.*

	Definition	Relationship
Binomial Nomenclature	<i>a naming system that gives each living thing a two-word scientific name</i>	<i>Two of the taxa to which an organism belongs, its genus and species, determine the two words in its scientific name.</i>
Taxon	<i>a group of organisms</i>	

Explain *how a dichotomous key helps with the identification of an organism.*

Organized steps of questions about an organism's features

determine which taxa the organism belongs in.

 Connect It Explain whether the following statement is true or false, and why: "People are multicellular autotrophs."

Accept all reasonable responses. Sample answer: This is false. People are multicellular; however, people do not make their own usable energy from light. People are heterotrophs; they must obtain energy from other organisms.

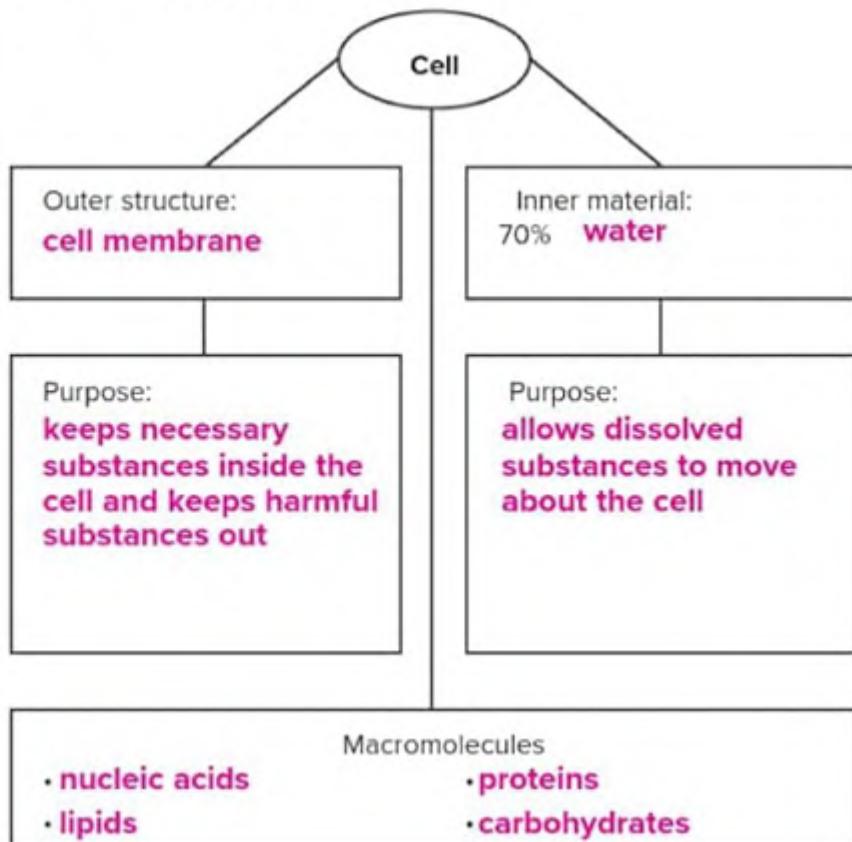
Lesson 2 Cells

ScanLesson 2. Read the lesson titles and bold words. Look at the pictures. Identify three facts you discovered about cells. Record your facts in your Science Journal.

Main Idea

What are cells?

What are cells made of?


Details

Contrastthe numbers of cells that make up organisms.

Most Organisms: **only one cell**

Humans: **about 100 trillion cells**

Characterizethe makeup of cells.

Types of Cells

Describetypes of cells.

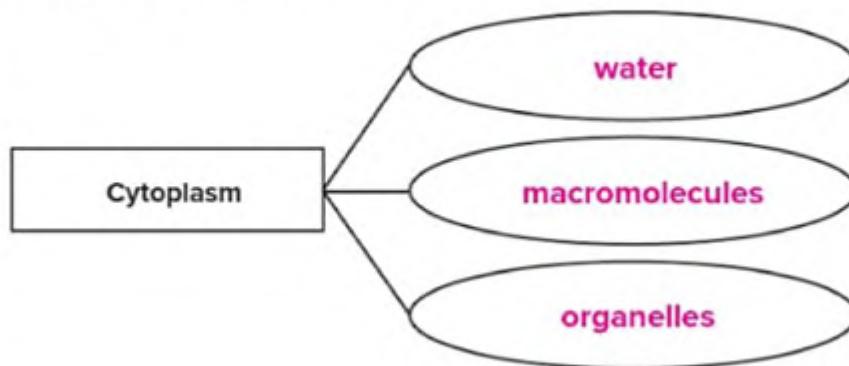
Prokaryotic cells	Eukaryotic cells
do not have a nucleus or other membrane-bound organelles	have a nucleus and other membrane-bound organelles

Main Idea

Details

Model a prokaryotic cell. Draw and label the cell, using different colors for different structures. Circle the names of at least two structures that are also present in eukaryotic cells.

Student drawings should show these structures: cell wall, cell membrane, capsule, flagellum, cytoplasm, ribosome, DNA. Students should circle **ribosome** and **cell membrane**; they might also circle **cytoplasm**.


The Outside of a Cell

Contrast a cell membrane with a cell wall.

Cell Membrane	Cell Wall
made of lipids and proteins; protects the cell; communicates with other cells and senses changes in the environment	made of different types of carbohydrates; a strong, rigid layer outside the cell membrane; found in plants, fungi, and many types of bacteria

The Inside of a Cell

Characterize the contents of the cytoplasm in cells of eukaryotic organisms.

Lesson 2 | Cells (continued)

Main Idea

Details

 Distinguish the nucleic acid DNA from RNA.

DNA	RNA
genetic material that controls all of a cell's activities	gives cells instructions about which proteins need to be made

 Compare and contrast the functions and locations of a mitochondrion and a chloroplast.

Mitochondrion	Both	Chloroplast
break down food and release energy; found in all eukaryotes	organelles in eukaryotes that process energy	capture light and convert it to energy; found in autotrophs only

 Describe the roles of different cell structures.

Structure	Role
Ribosomes	make proteins in the cytoplasm
Endoplasmic reticulum	holds the ribosomes in eukaryotic cells; processes and moves proteins inside the cell
Golgi apparatus	packages proteins into organelles called vesicles
Vesicles	transport proteins around a cell
Vacuoles	store water and other molecules; provide support in plant cells

 Analyze It Generalize how prokaryotic and eukaryotic cells relate to unicellular and multicellular organisms.

Accept all reasonable responses. Sample answer: Most prokaryotes are unicellular organisms, such as bacteria. Most multicellular organisms are made of eukaryotic cells.

Chapter Wrap-Up

Now that you have read the chapter, think about what you have learned.

Use this checklist to help you study.

- Complete your Foldables® Chapter Project.
- Study your *Science Notebook* on this chapter.
- Study the definitions of vocabulary words.
- Reread the chapter, and review the charts, graphs, and illustrations.
- Review the Understanding Key Concepts at the end of each lesson.
- Look over the Chapter Review at the end of the chapter.

Summarize It Reread the chapter Big Idea and the lesson Key Concepts. Describe yourself as an organism, using all of the vocabulary terms from Lessons 1 and 2.

Accept all reasonable responses. Sample answer: I am not an autotroph because I cannot convert light energy into my own food. I am a heterotroph because I get my energy from other organisms. My habitat includes buildings like my home and school, which provide me with shelter and protection. In binomial nomenclature, my scientific name is *Homo sapiens*. One of the taxa I belong to is the kingdom *Animalia*. I am not made of prokaryotic cells; I am made of eukaryotic cells. All of my cells have cytoplasm and mitochondria.

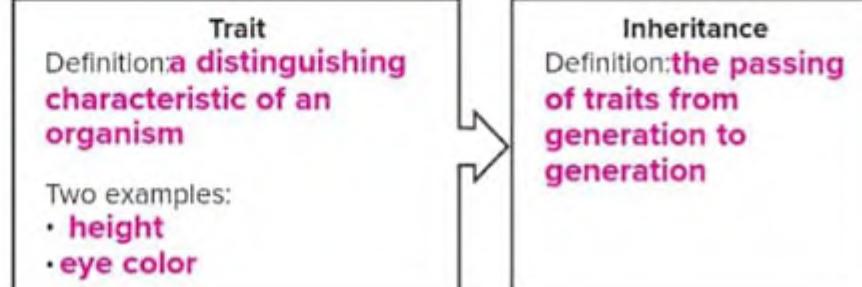
Challenge Research organisms that are considered to be multicellular prokaryotes. Design a poster about one such unusual organism with captions that explain its characteristics. Display the poster in your classroom.

Lesson 1 Inheritance and Traits

Scan Lesson 1. Read the lesson titles and bold words. Look at the pictures. Identify three facts you discovered about inheritance and traits. Record your facts in your Science Journal.

Main Idea

What is inheritance?

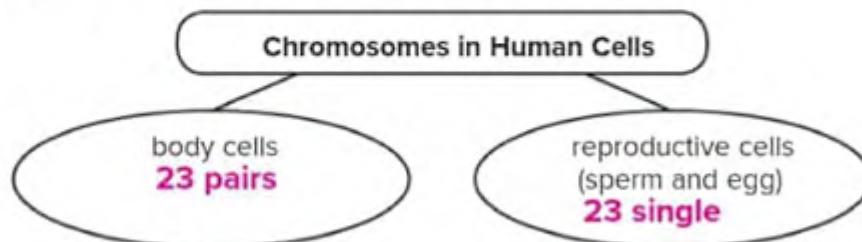

Sample examples are shown.

Inheritance and DNA

Details

Relate traits to inheritance.

Describe terms associated with inheritance.


Term	Description
DNA	a long, tightly-coiled molecule that looks like a twisted zipper inside a cell's nucleus
Gene	a section of DNA that has genetic information for one trait
Chromosome	a structure made of long chains of DNA and thus hundreds or thousands of genes

Restate the role of genes in inheritance.

Genes carry the information for traits. Traits are passed from parents to offspring in genes.

Copyright © McGraw-Hill Education

Differentiate numbers of chromosomes in human cells.

Lesson 1 | Inheritance and Traits (continued)

Main Idea

Combining Genes

Details

Sequence the recombination of genes in sexual reproduction.

Meiosis

Chromosomes in existing reproductive cells **replicate and divide.**

They split into **four cells**, each with **half** the number of chromosomes.

Fertilization

A **sperm** and an **egg** unite.

The resulting offspring has **a full set of paired chromosomes**, half from **each parent.**

Influencing Traits

Contrast genotype and phenotype. Describe each term, then circle yes or no in answer to each question.

Genotype

Description: **an organism's complete set of genes**

Can it change?

yes no

Influenced by the environment?

yes no

Phenotype

Description: **how a trait appears or is expressed**

Can it change?

yes no

Influenced by the environment?

yes no

Lesson 1 | Inheritance and Traits (continued)

Main Idea

Sample examples are shown.

Details

Classify examples of environmental factors that affect phenotype.

Effects of Environmental Factors on Phenotype

Example of physical factor:
A nutrient-rich diet can transform an ordinary bee into a queen.

Example of social factor:
Locusts change color and swarm when they are in a large group.

Contrast changes to phenotype caused by the environment with mutations. (How do these changes affect offspring?)

Environmental changes to phenotype are not passed on to offspring; mutations are permanent changes to the sequence of DNA and are passed on in genes.

Distinguish possible causes and effects related to mutation in reproductive cells.

Possible causes

random or caused by exposure to chemicals or radiation

Mutation

a change in the sequence of DNA in reproductive cells

Effects on organism

- May help.
- May hurt.
- May neither help nor hurt.

Copyright © McGraw-Hill Education

Connect It Describe a trait amongst members of your family or the family of a friend that others might observe and use to conclude that family members are related.

Accept all reasonable responses. Sample answer: My grandfather, my mom, my sister, several of my aunts, uncles, and cousins, and I all have similar bumps on our noses.

Lesson 2 Adaptations in Species

Predict three facts that will be discussed in Lesson 2 after reading the headings. Record your predictions in your Science Journal.

Main Idea

What is adaptation?

How Adaptations Occur

Details

Relate how mutations cause variation.

Mutations, which are **permanent changes** in the sequence of DNA in a gene

cause...

variations, which are **slight differences in inherited traits among individual members of a species.**

Define adaptation.

Adaptation: an inherited trait that helps a species survive in its environment

Assess how the variations in giraffe fur patterns can serve as an adaptation.

Giraffe spots help them blend in with their surroundings and avoid predators.

Characterize natural selection.

Variations help organisms

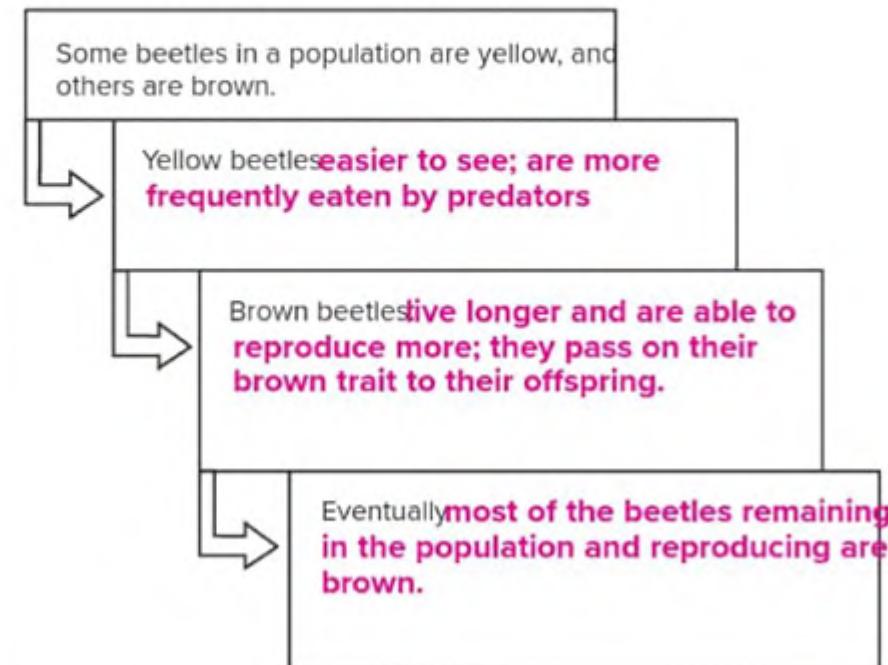
survive in their environment

which allows them to

live longer

compete better

which allows them to


reproduce more

Lesson 2 | Adaptations in Species (continued)

Main Idea

Details

Sequence the natural selection process that turns a color variation in beetles into an adaptation.

Differentiate natural selection from selective breeding.

Natural Selection	Selective Breeding
the process by which organisms with variations that help them survive in their environment live longer, compete better, and reproduce more than those that do not have the variation	the selection and breeding of organisms with desired traits

Express the primary difference between the two processes above.

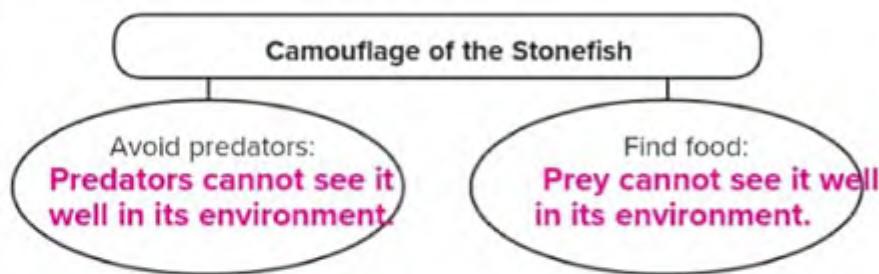
In selective breeding, humans, instead of nature, select the desired traits to be passed on.

Lesson 2 | Adaptations in Species (continued)

Main Idea

Types of Adaptations

Details


 Distinguish the 3 types of adaptations.

Type	Description	Example
Structural	a physical trait that increases survival	the color and shape of insect's eyes
Behavioral	a behavior or action that increases survival	playing dead to fool predators
Functional	a biochemical change that enables a species to increase survival or maintain homeostasis	hibernating or shedding

 Describe two types of structural adaptations.

Camouflage	Mimicry
an adaptation that helps a species blend in with its natural surroundings	an adaptation in which one species looks like another species

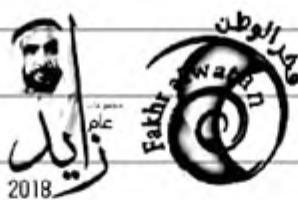
 Assess how a structural adaptation helps an animal both to avoid predators and to find food.

 Analyze It Consider a world without variations within species. Describe how this might affect the balance between predators and prey.

Accept all reasonable responses. Sample answer: Some species would likely disappear, because they could not develop adaptations over time that help them avoid predators. On the other hand, predators would not be developing adaptations to better enable them to catch their prey, either.

Chapter Wrap-Up

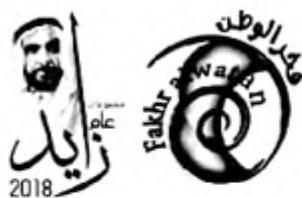
Now that you have read the chapter, think about what you have learned. Review the cause and effect chart on the first page of the chapter and compare your ideas to what you know now.


Use this checklist to help you study.

- Complete your Foldables® Chapter Project.
- Study your *Science Notebook* on this chapter.
- Study the definitions of vocabulary words.
- Reread the chapter, and review the charts, graphs, and illustrations.
- Review the Understanding Key Concepts at the end of each lesson.
- Look over the Chapter Review at the end of the chapter.

Summarize It Reread the chapter Big Idea and the lesson Key Concepts. Summarize how the processes of inheritance and natural selection have shaped the diversity of life on Earth.

Accept all reasonable responses. Sample answer: Through the process of inheritance, endless combinations of traits are passed from parent organisms to their offspring. Over the course of many generations, this results in many genotypes and many variations expressed in organisms' phenotypes. Those variations that turn out to be beneficial to organisms continue to be passed on because of natural selection.


Challenge Choose an animal species to learn about. Study the animal's traits, variations, and adaptations. Make a poster with images and labels that display how the animal's adaptations help it to survive in its environment. Present your poster to your class.

Lesson 1 Plant Diversity

Predict three facts that will be discussed in Lesson 1 after reading the headings. Record your predictions in your Science Journal.

Main Idea

What is a plant?

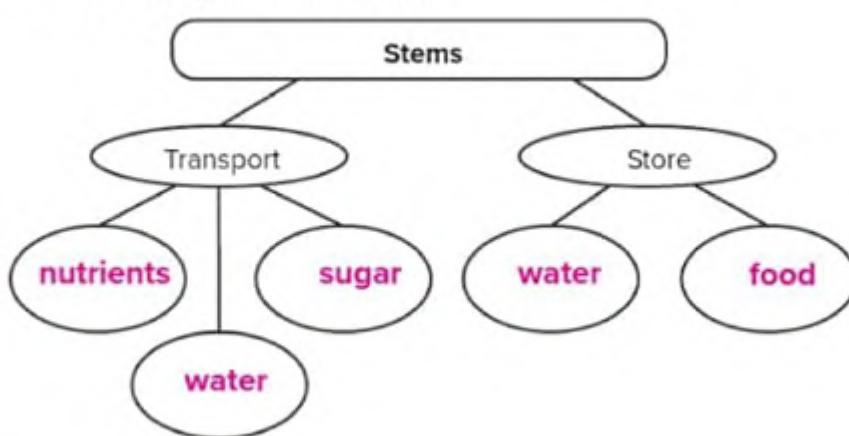
Details

Restate four uses for which humans depend on plants.

1. food
2. 4. building materials
3. oxygen
4. paper

Classify cell parts. Make a checkmark in the columns to indicate whether a part belongs to plant cells, animal cells, or both.

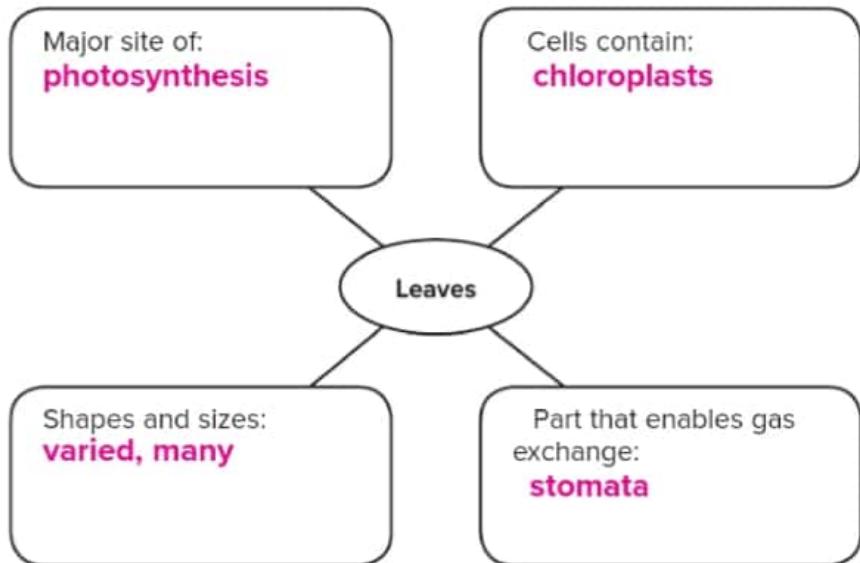
Plant	Animal	Part of Cell
✓	✓	nucleus
✓		chloroplast
✓		cell wall
✓	✓	mitochondria
✓		central vacuole
✓	✓	ribosomes


Key **Differentiate** roots from rhizoids.

Root: anchor and support plant; absorb water and minerals

Rhizoid: rootlike structure that anchors a plant without

transport tissue to a surface


Key **Identify** functions of stems.

Main Idea

Details

Characterize leaves.

Nonvascular Plants

Describe nonvascular plants.

	Definition	Three Divisions
Nonvascular Plants	plants that lack specialized tissues for transporting water and nutrients	<ul style="list-style-type: none">mossesliverwortshornworts

Vascular Seedless Plants

Define vascular plant.

Vascular plant: a plant that has specialized tissues, called vascular tissues, that transport water and nutrients throughout the plant

Identify the characteristic shared by ferns, horsetails, and club mosses.

Ferns, horsetails, and club mosses are three types of vascular plants that do not produce seeds.

Lesson 1 | Plant Diversity (continued)

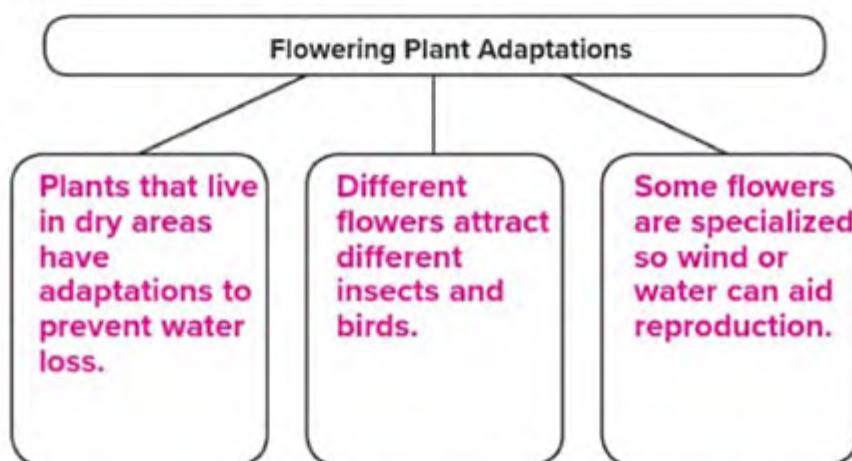
Main Idea

Vascular Seed Plants

Sample examples are shown.

Details

 Classify *vascular seed plants.*


Vascular Seed Plants		
Two types	gymnosperm	angiosperm
Definitions	plants that produce seeds that are not part of a fruit	plants that produce flowers and develop fruits
Examples	<ul style="list-style-type: none">cycadgingkoconifergnetophyte	<ul style="list-style-type: none">poppypalm treecactusgrass

 Paraphrase *the primary difference between the two groups of vascular seed plants.*

One group produces flowers and fruits; the other does not.

Sample answers are shown.

 Identify *three ways flowering plants can be adapted to different environments.*

 Connect It Consider the plants you routinely see around your home or school. Describe four of them using concepts you have learned in Lesson 1.

Accept all reasonable responses. Sample answer: The plants in the garden are angiosperms. The tree in the yard has a woody stem, but the daisies by the mailbox have herbaceous stems. The fern on my teacher's desk is a vascular seedless plant.

Lesson 2 Plant Reproduction

ScanLesson 2. Read the lesson titles and bold words. Look at the pictures. Identify three facts you discovered about plant reproduction. Record your facts in your Science Journal.

Main Idea

Asexual Reproduction

Sexual Reproduction

Details

Characterize

Sequence

sexual reproduction in plants.

Compare and contrast

asexual and sexual reproduction in plants.

Asexual	Both	Sexual
one parent, genetically identical offspring	produce offspring	two parents, genetically different offspring

Lesson 2 | Plant Reproduction (continued)

Main Idea

Plant Life Cycles

Details

Diagram the life cycle of plants.

Contrast the formation of reproductive cells in seedless and seed plants.

Seedless Plants	Seed Plants
<p>Mature plant produces spores; spore produces gametophyte; gametophyte produces sperm and egg.</p>	<p>Mature plant produces pollen, which contains sperm, and female structures that produce eggs.</p>

Copyright © McGraw-Hill Education

Identify processes of seed plant reproduction.

pollination

Pollen is transferred to a female plant structure; a seed forms.

dormancy

The seed goes through a period of no growth.

germination

The seed begins to grow when conditions are favorable.

Lesson 2 | Plant Reproduction (continued)

Main Idea

Details

Key **Contrast** female reproductive parts of a gymnosperm and an angiosperm. Use the following terms in your explanations.

eggs

seed

pistil

Gymnosperm	Angiosperm
Eggs (and after fertilization, the seeds) are contained within female cone.	The pistil, inside the flower, contains the ovary where the seed develops.

Define parts of a flower.

Pistil: the female reproductive organ

Stamen: the male reproductive organ

Anthers: structures on the stamen that produce pollen

Describe the gametophyte stage of a flowering plant.

Gametophyte stage:
production of eggs and sperm by the flower

Beginning of sporophyte stage:
fertilization

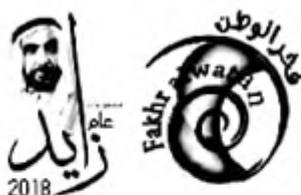
Differentiate growth cycles of seed plants.

Annuals
grow from a seed and produce flowers in one season

Biennials
take two seasons to produce flowers

Perennials
grow and bud for many years

Key **Analyze It** Carrots and beets are biennial plants with large roots that store food between growing seasons. Hypothesize what these plants might look like if you planted them in a garden, but instead of harvesting them to eat, left them in the ground to grow in the next season.

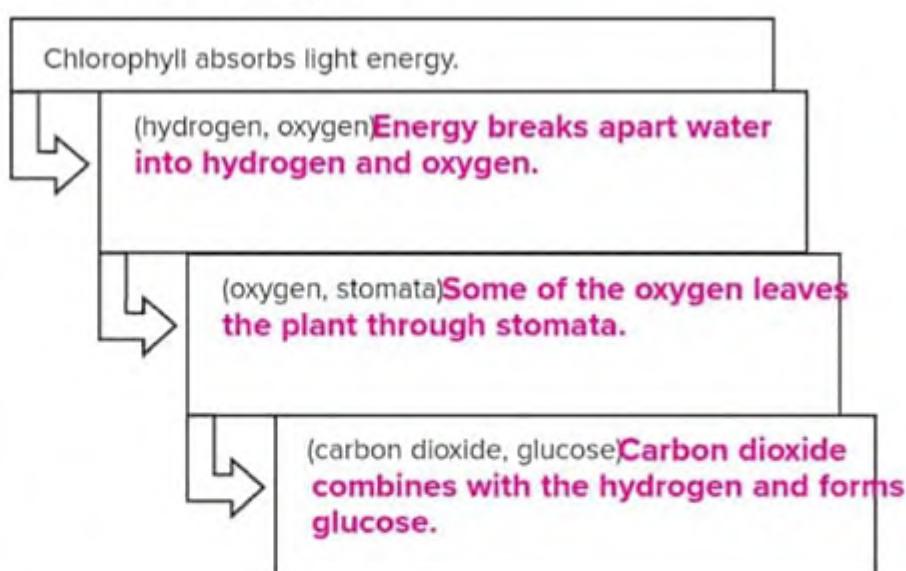

Accept all reasonable responses. Sample answer: The plants would flower and seed.

Lesson 3 Plant Processes

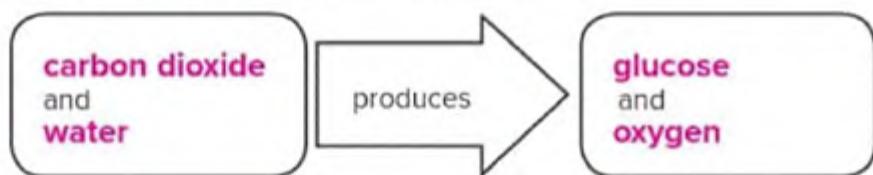
Predict three facts that will be discussed in Lesson 3 after reading the headings. Record your predictions in your Science Journal.

Main Idea

Photosynthesis and Cellular Respiration



Details


Relate the importance of plants to all animal life.

All animals either eat plants themselves or depend on other organisms that eat plants.

Sequence the processes of photosynthesis. Use the words in parentheses in your explanations.

Express the process of photosynthesis.

Differentiate photosynthesis from cellular respiration.

Photosynthesis	Cellular Respiration
Carbon dioxide and water yield glucose and oxygen.	Glucose and oxygen yield carbon dioxide, water, and ATP.

Lesson 3 | Plant Processes (continued)

Main Idea

Details

Compare ways in which plants and animals both use oxygen.
Both plant and animal cells use oxygen during cellular respiration.

Movement of Nutrients and Water

Contrast absorption and transpiration.

Absorption	Transpiration
Roots absorb water and nutrients from the soil.	Stomata in leaves release water vapor.

Plant Responses

Categorize plant responses.

Stimulus	Tropism	Description
light	Positive phototropism	Leaves grow toward the light.
gravity	Negative gravitropism	Stems grow away from the ground.
touch	Thigmotropism	Tendrils coil around an object.

Synthesize It Why is it beneficial to humans to know about the plant processes discussed in Lesson 3?

Accept all reasonable responses. Sample answer: People rely directly or indirectly on plants for all of our food. We can cultivate plants for our own food production, and the plants will be more productive if we ensure that they get proper light and water for photosynthesis.

Guide the Investigation / Suggested Pacing

Day 1

It's alive! Or is it?

- Introduce the project by reading the section titled **It's alive! Or is it?**
- Review what students know about cells and identify misconceptions.
- Explain the activity's goal. Students should conduct an investigation designed to determine the nature of three unidentified samples.

Get Started!

- Outline the activity by reading the **Get Started!** section.
- Provide students with materials and tools they will have available to them to conduct their investigation.
- Remind students that the questions to be answered are: Is the sample living or nonliving? Does the sample consist of one cell or many cells? Is the sample made of one type of cell or many types of cells?

Day 2

Get Started!

- Guidelines specified on **Day 1** should continue.
- Students should use their lists to conduct their investigations. Remind students to record their observations.
- Once all student investigations are complete, reveal the composition of the three samples.
- If there is time, have students briefly describe their investigation and evidence to the other groups.

Finish Up!

- Explain to students that a memo is a brief written message or summary of information.
- Ask guiding questions to help students identify the strengths and weaknesses of their investigations.
- Generate a discussion about the last bullet point on the **Finish Up!** section. Ask the class to use the evidence from all groups to generate a list of general characteristics of living things. Have them make another list for cells. Is this easier than using just one group's evidence? Why or why not?
- In the last bullet point, students are asked to write lists of characteristics to determine whether an object:
 - is living or nonliving **Possible answer: A living organism is made up of one or more cells. A nonliving thing does not contain cells.**
 - is made of one or many cells **Possible answer: Many microscopic organisms, such as bacteria and protists, are made up of only one cell. Most organisms that can be observed without the aid of a microscope are made up of many cells.**
 - contains one type of cell or many types of cells **Possible answer: Most organisms that are made up of more than one cell have different types of cells.**