TEACHER EDITION

McGraw-Hill Education
Integrated Science
United Arab Emirates Edition

Table of Contents

Chapter 1: Be a Scientist

LIFE SCIENCE

Chapter 2: A Look at Llving Things
Chapter 3: Living Things Grow and Change
Chapter 4: Living Things in Ecosystems

SCIENCE, TECHNOLOGY, AND ENGINEERING

Chapter 5: Technology and Design

TECH KNOWLEDGE

Chapter 6: Computer Basics
Chapter 7: Keyboarding

EARTH AND SPACE SCIENCE

Chapter 8: Earth Changes
Chapter 9: Changes in Weather

PHYSICAL SCIENCE

Chapter 10: Matter

TECH KNOWLEDGE

Chapter 11: Word Processing
Chapter 12: Internet

PHYSICAL SCIENCE

Chapter 13: Changes in Matter
Chapter 14: Forces and Motion
Chapter 15: Forms of Energy

The B and Y Keys 268
The M and X Keus 269
The P and V Keys 270
The O and $<$, Keys 271
Lesson 4 The Z and ; Keys 272
The Caps Lock and ?/ keys 273
The Tab Key 274
The Nurnbers 1 and 7 275
The Numbers 4 and 8 276
The Numbers 5 and 9 277
The Nurnbers 3 and 0 278
The Numbers 2 and 6 279
The Sumbol Keys 280
Review 281
Chapter Test and Project 282
EARTH AND SPACE SCIENCE
Chapter 8: Earth Changes 288
Lesson 1 Eorth's Fectures 290

- Inquiry Skitl Builder 292
Lesson 2 Sudden Chonges to Earth 306
- Rooding in Science 318
Lesson 3 Weothering and Erosion 320
- Math in Science 332
Chapter 8 Review and Test Preparation 334
Chapter 9: Changes in Weather 340
Lesson 1 Weather 342
- Inquiry Skill Builder 344
Lesson 2 The Water Cycle. 358
- Reading in Science 374
Lesson 3 Climate and Seasons 376
- Math in Science 388
Chapter 9 Review and Test Preparation 390
PHYSICAL SCIENCE 398
Chapter 10: Matter
400
Lesson 1 Properties of Matter412
Lesson 2 Measuring Matter 414
Lesson 3 Solids, Liquids, and Gases 430
- Math in Science 442
Chapter 10 Review and Test Preparation 444
Careers in Science. 450
TECH KNOWLEDGE
Chapter 11: Word Processing 454
Lesson 1 Word Processing Skill Review 455
Tabs 456
Lesson 2 Line Spacing 457
Commas, Colons and Quotation Marks. 458
Spell Checker 459
Lesson 3 Underline and Bold 460
Change the Font. 461
Select Text 462
Copy and Paste Text 463
The "Select All" Command. 464
Page Breaks 465
Edit a Paragraph 466
Chopter Test and Project 467
Chapter 12: Internet . 469
Lesson 1 Basic Web Review 470
Hyperlinks 471
Favorites 472
Lesson 2 Save Texts from the Web 473
Online Homework Help 474
Lesson 3 Send E-mail 475
Reply to E-mail 476
Chapter Test and Project 477
PHYSICAL SCIENCE
Chapter 13: Changes in MatterLesson 1 Changes of State.
- Inquiry Skill Builder
Lesson 2 Physical Changes
- Reading in Science
Lesson 3 Chemical Changes
- Inquiry InvestigationChapter 13 Review and Test Preparation.

Chapter 14: Forces and Motion

Lesson 1 Position and Motion

- Reading in Science

Lesson 2 Forces.
 - Inquiry Investigation

Lesson 3 Using Simple Machines

- Writing in Science

Chapter 14 Review and Test Preparation.

Careers in Science.
Chapter 15: Forms of Energy
Lesson 1 Work and Energy

- Inquiry Skill Builder

Lesson 2 Heat

- Inquiry Skill Builder

Lesson 3 Electricity.

- Writing in Science

Chapter 15 Review and Test Preparation
Careers in Science.

Earth and Space Science

Lesson

Earth's Features

PACING: 2 doy
Mast findek 1 day

DEMEETHESAND
READINE SKILS

- Identify Earthes landforms and the feotures of the ocean flaor.
- Deserbe the layers af Earth.

Reading Skil.
Maln Idea and Detalla

Meparulary
acean
contiment
landionm
crust
mantle
core
earthquake
walcona
magma
lavo
landslde

- Deserbe earthquakes and voleanoes and udentify the
- Describe the effects of landslades and floods.
flood

Reading Skill.
Couse and Effect

- Describe and dentify the forces that causs weathering and erosibn.
- Analuze how people change the Land.

Weathering and Erosion

PACING 2 doy HuT THACK 1 day
wathering
erocion
glacier
depoestion

Text Clues	Convelusions

Activity Planner

explore Activities

cuick lab
 Activities

Explore FACNG： 20 minula

Objective Obecre that most of Earthes surfoce is cowered by water．
Sbilu experiment，doserve，lese numbers infer
Materials glaba
Hhas Borrow extra glabes，or have students complete the activity os aclocs．

Explore facinc SOmintici

Objective Model changes that happen when land moves suddenty．
Skills make a model，communieate，experiment，infer
Materials aluminum pan，sand，assonted blocks，twigs
Whatio Gaution students not to top the pan hard
enough for splil the sand．

Objective Madel voleanic eruptions．
Skilk make a model abscrve，communicate
Moterials samples ar fravel tulacs of focthpostc， newspapers，thu mbtack

重胡給 Cower destes with newspoper to protect them from the toothpaste and maloe cleanup cusker．

Explore FACina Sominte 青

Objective Model how maving water changes racles．
Stille measure，use variabies，abeerwe，Infer
experiment
Materials sandstone rocks mensuring cup， 3 plastic Jars with ilde，stopwatich，hand lens

1）Rew Substitute siltetene or shale if necersary．

－Opick Lab PuONE：IS mirtis

Objective Observe how variaus materials settic．
Skille make a model，interprct data，infer
Moterlals potting soil，sand，small pobbles， measuring cup，large plastic jar with Lid， newspapec，water

Heht Cower desks with newspaper hefore filing the jar．Do not uec a gloes jar due to the risk of brenkoge．

Language Acquisition Support

Academic Language

When learning, students need help in building their understanding of the academic language used in daily instruction and science activities. The following strategies will help to increase students' longuoge proficiency and comprehension of content and instruction words.

Strategies to Reinforce Academic Language

- Use Context Academic language should be explained in the context of the task. Use gestures, expressions, and visuals to support meaning.
- Use Visuals Use charts, transparencies, and graphic organizers to explain key labels to help students understand classroom language.
- Model Use academic language as you demonstrate the task to help students understand instruction.

Academic Language Vocabulary Chart

The following chart shows chapter vocabulary and inquiry skills. Vocabulary words help students comprehend the main ideos. Inquiry Skills help students develop questions and perform investigations.

Vocabulary	Inquiry Skills
ocean	experiment
continent	observe
iandform	use numbers
crust	infer
mantle	make a model
core	communicate
earthquake	measure
volcano	use variables
magma	
lava	
landstide	
flood	
weathering	
glacier	
deposition	
erosion	

Vocabulary Routine

Use the routine below to discuss the meaning of each word on the vocabulary chart. Use gestures and visuals to model all words.

Define: A landform is a feature of Land on Earth's surface.
Example: A mountain is the tallest landform.
Ask: Look at the map in Lesson 1. Can you name two other landforms?
Students may respond to questions according to proficiency level with gestures, one-word answers, or phrases.

Vocabulary Activities

Help students understand the causes of change to Earth's landforms.
becinning Walk students through the pictures in Lesson 2. Students can use words and gestures to describe the pictures. Have them say the change being depicted. Then ask: What does [an earthquake] look like? Have students answer by pointing to the picture or acting it out.

INTERMEDIATE Have two teams of students write short descriptions about each type of landform change discussed in the chapter. Then have the teams take turns reading a description as the other team guesses the word.

ADVANCED Explain that earthquakes cause land to change fast, and weathering causes land to change slowly. Have students give one more example of a fast change and one example of a slow change. Students can use their own words to describe what the land would look like after those changes occur.

CHAPTER
 8
 Earth Changes

웅THE BIG IDEA What can cause Earth's features to change?

Chapter Preview Have student examine the graphics in each lesson. Ask them to predict what each lesson will be about.

Vocabulary

- Have a volunteer read the Vocabulary words aloud to the class. Ask students to find one or two words in the chapter. Add these words and their definitions to a class Word Wall.
- Encourage students to use the illustrated glossary in the Student Edition's reference section.

CHAPTER 8

Earth Changes

What can cause Earth's features to change?

Answers will vary.
\qquad
\qquad
\qquad
\qquad
\qquad

Vocabulary

ocean a large body of salt water
continent a great area of land on Earth
earthquake a sudden movement of the rocks that make up Earth's crust

volcano a mountain that builds up around an opening in Earth's crust weathering the breaking down of rocks into smaller pieces
erosion the wearing away and movement of weathered rock

Differentiated Instruction

Instructional Plan

Chapter Concept Earth's surface is continually changing.
EXTRA SUPPORT Students who need to identify landforms and bodies of water should review the opening of Lesson 1 before continuing with the chapter.

ON LEVEL
 Students who can identify Earth's basic

 features can go to the end of Lesson $\mathbf{1}$ to look under the oceans and inside Earth and then go directly to Lesson 2 to explore sudden changes.
ENRICHIENT For students who are ready, Lesson 3

 builds on processes of slow change from earlier grades by highlighting kinds of weathering and of erosion.
- Assess Prior Knowledge

Before reading the chapter, create a KWL chart with students. Read the Big Idea question and then ask:

■ What are some of Earth's features?

- What can cause sudden changes to Earth?
- How do weathering and erosion change Earth's features?

Answers shown represent sample student responses.

Before reading this chapter, write down what you already know in the first column. In the second column, write down what you want to learn. After you have completed this chapter, write down what you learned in the third column.

Earth Changes		
What We Know	What we Want to Know	What We Learned
Water covers much of Earth's surface.	What are some land features?	
Earthquakes cause sudden changes to Earth	How do volcanoes change Earth's features?	
Weathering breaks down rocks.	How does erosion change Earth's	
features?		

Lesson 1 Earth's Features

Essential Question

What shapes can the land take?

Objectives

- Identify Earth's landforms and the features of the ocean floor.
- Describe the loyers of Eorth.

Reading Skill Main Idea and Details

You will need a main idea and details graphic organizer.

* FAST TRACK

Lesson Plan When time is short, follow the Fast Track and use the essential resources.

IIntroduce
Look and Wonder

2 teach
Discuss the Main Idea
Use the Visuals
Use the Visuols

3 close
Think, Talk, and Write

Teacher Notes

\qquad

Lesson 1 Earth's Features

Objectives

E Identify Earth's landforms and the features of the ocean floor.

- Describe the Layers of Earth.

- Assess Prior Knowledge

Have students discuss pictures that they have seen of Earth from space. Ask:

What color is Earth from space? mostly blue
What are the Large Land areas on Earth called? continents

W What is the water Like in the oceans? Possible answers: salty, cold

Warm UP

Start with a Discussion

Have students discuss any unusual ploces they hove troveled to. Ask those who hove flown a long distance in an airplane to describe what they could see out of the window from high above Earth.
Encouroge students to discuss what Earth's surface looks Like from space or from an airplane. Ask

- What features are seen in our area?
- What large bodies of water are nearby?

Look and Wonder

Both land and water cover Earth's surface. Which one covers more of Earth?

Students may know that water covers almost three-quarters of Earth's surface.

Essential@restion

What shapes can the land take?
Answers will vary. Accept any reasonable answer.

Look and Wonder

Invite students to share their responses to the Look and Wonder statement and question:

- Both Land and water cover Earth's surface. Which one covers more of Earth?

Write ideas on the board and note any misconceptions that students may have. Address these misconceptions as you teach the lesson.

Ilssenitialorestion

Have children read the Essential Question. Tell them to think about it as they read through the lesson. Advise children that they will return to this question at the end of the lesson.

Plan Ahead Have any visually impaired students record the results of the spins. If there is only one globe in the classroom, complete the Explore as a class activity. Have students take turns spinning the globe. Assign one student to be in charge of the tally chart.

Purpose Students will collect evidence showing that most of Earth's surface is covered by water.

Structured Inquiry

Make a Prediction

(2) Experiment Make sure students have their eyes closed when they touch their fingers to the globe. Be Careful! Make sure students do not mark on the globe.
(3) Observe Make sure students record the results of all 10 of their spins. Make sure students are randomly touching different places on the globe. If they only touch places in the Northern Hemisphere, they will get more land results.
(5) Use Numbers Most students will touch water more often than land.

Does land or water cover more of Earth's surface?

Make a Prediction

Do you think that there is more land or more water on Earth's surface? Write your prediction.

Possible predictions: There is more water than

land on Earth's surface.

Test Your Prediction

(1) Make a table like the one shown for ten spins.
(2) Experiment Slowly spin a globe. Do not look at it.

Touch your finger to the globe to stop it.
3 Observe Did your finger stop on land or water? Record the information on the chart.

4 Repeat steps 2 and 3 nine more times.
(5) Use Numbers How many times did you touch water? How many times did you touch land? Answers will vary.

Drow Conclusions

(8)

Infer Is there more land or more woter on Earth? How do Hour resultis compare with the resulis of athers?

Answers will vory Most groups will discover thot there is more woter than land on Earth.

Explore More

Experiment Which covers mane of Earth-riwers or oceons? Pake a
plon to find out.
Students" plans may vary, but they should determine that oceans cover more
of Earth.

Open Inquiry

Design oplan to determine which oicen geters the largest aren ph
Eorth's surfoce,
My question is: An5wers will vary.
\qquad
\qquad
Howl gon testin:

```
Answers will vgry.
```

My results are: Answers will wary.

6 Infer Most groups will discover that there is more water than Land on Earth.

Guided Inquiry

Explore More

Experiment Encourage students to use the globe to help them determine the answer to this question. Be sure students know how rivers are indicated on the globe.

Open Inquiry

Have students determine which ocean covers the Largest area on Earth's surface. Have students come up with a method for answering this question other than by simply looking at the globe. Ask:
What other way might there be to find which ocean covers the largest area?

Alternative Explore

What are some land features?

Materials globe, atlases, physiographic maps Have students work in small groups. Have students in the groups carefully look at the features on the globe, maps, or atlases, and describe any features they see, such as mountains, plains, and valleys. Have students make a list of as many different landforms as they can. Give the groups 10-15 minutes to find the land features.

Teach

Main Idea As students read the Lesson, have them write down any land or ocean-bottom features that are new to them.

Vocabulary Have students write definitions of the Lesson's vocabulary terms in their own words to use as a study guide.

Reading Skill Main Idea and Details Graphic Organizer Have students fill in the Main Idea and Detail. graphic organizer as they read
 through the lesson. They can use the Quick Check questions to identify each main idea and detail.

What covers Earth's surface?

- Discuss the Main Idea

Hove students describe the different bodies of water they hove visited. Ask:

- What are two water features on Earth, other than oceans? Possible answers rivers, streams, lakes, ponds, glaciers
- What is the water in these bodies like? It: is mostly freshwater. Some lakes have salt water.

What covers Earth's surface?

If you could see Earth from space, it would look mostly blue. That is beccuse olmost three fourths of Earth is covered by woter. Most of this water is in oceans (OH -shuriz). Oceans are large bodies of salt water.

Rivers, streams, glaciers, and ponds ore some other water features on Earth. These water features are mode up of freshwater. Freshwater is water thot is not salty. Lakes are another water feature. Most lakes have freshwater. Some have solt woter.

Oceans and Continents

Arctic Ocean

North
America

Atlantic Ocean
Pacitic
Ocpan

Earth also has seven great areas of land called continents (KAHN•tuh•nunts). Asia is the continent you live on.

A map can show Earth's land and water features. To read a map, look at its key. A key shows what a map's colors and shapes mean. Can you find Asia on the map below?

1. About how much of Earth is covered by land?
one-fourth

Develop Vocabulary

ocean Word Origin The word ocean is from the Greek word okeanos, which the Greeks thought was the great river surrounding the disk of Earth. continent Word Origin The word continent is from the Latin word continentem, which means "holding together," "continuing." A continent is a large continuous landmass.

- Address Misconceptions

A common misconception is that there are several oceans.

FACI The oceans are really one big body of water.

The names of the oceans are used to help identify different ocean areas.

When many of the areas were named, people did not know what the entire Earth looked like. They only knew about a relatively small area near where they lived.

To show students that there is really one big ocean, have them look carefully at the southern half of Earth. Around Antarctica, they will see that the oceans are connected.

Differentiated Instruction

Leveled Questions

EXTRA SUPPORT What features cover Earth's surface? Use vocabulary words in your answer. Possible answer: oceans, rivers, glaciers, lakes, and continents What is a continent? a great area of land

ENRICHMENT

Compare and contrast oceans with rivers, streams, ponds, and glaciers. All are examples of water that covers Earth's surface. Oceans contain salty water and cover most of Earth. Rivers, streams, ponds, and glaciers contain freshwater (water that is not salty).

What are some of Earth's Iand

 and water features?
- Discuss the Main Idea

Have student volunteers find examples of the different landforms discussed on a globe or map. Ask:

- What is an example of a mountain range in the United States? Possible answers: the Rocky mountains, the Appalachian mountains, the Cascade range, the Sierra Nevada range
- What river is the biggest in North America? the Mississippi River

Develop Vocabulary

Landform Point out to students that they can think of a landform as the "form of the land."

- Use the Visuals

To help students remember what the different landforms look like, have volunteers find on a map or globe examples of each landform in the diagram. Ask:

- How is a lake different from an ocean? A lake is smaller and usually has freshwater instead of salt water.
- How is a plateau different from a mountain? A plateau has a flat top.

■ How is a canyon different from a valley? A canyon is deep with narrow sides.

Differentiated Instruction

Leveled Activities

EXTRA SUPPORT Have students describe the different landforms in their own words. They should draw each landform next to its description.

ENRICHMENT

Have students research more information about an example of one of the landforms. Have students make a poster showing the landform they researched. Ask volunteers to present their posters to the class.

Features of Earth

0
A mountain is the tallest landform. It often has steep sides and a pointed top.
(2) A valley is the low land between hills or mountains.
(3) A canyon is a deep valley with steep sides. Rivers often flow through them.
(4) A plain is land that is wide and flat.
(5) A lake is water that is surrounded by land.

A river is a large body of moving water.

A plateau (pla $\cdot \mathrm{TOH}$) is land with steep sides and a flat top. It is higher than the land around it.

8 A coast is land that borders the ocean.

9 A peninsula is land surrounded by water on three sides.

An island is land with water all around it.

Your Country's Features
See the Quick Labs in the back of the book.
Objective Identify features in your country.
Materials maps of the country, large sheets of white paper, colored pencils

Plan Ahead Obtain physical or political maps of your country. White copy paper can be used instead of sheets of drawing paper.
(1) Make sure students Label the major Land and water features on their maps. A key must be drawn in a bottom corner of the maps.

2 Students should accurately locate and label your town or city on the map. Answers will vary but should accurately list some of the major land and water features in your area. Comparisons with other features in the country will vary but should be clearly and accurately described.

LA Support

Ask Questions Ask students what an area of low land between hills is called. What is an area of land that is wide and flat? Discuss what valleys and plains are. For valleys, have students point down. For plains, have students trace an imaginary straight line with their hands. You may also sketch both landforms on the board and have students identify each one. Have them name other landforms or bodies of water. Write their responses on the board. Have the whole class repeat the words after you.

BEGINNING
Students can point to or name pictures of landforms or bodies of water.

INTERMEDIATE Students can use phrases or short sentences to describe landforms and bodies of water.

ADVANCED

Students use complete sentences to describe landforms and bodies of water.

What land features are in

 the oceans?
- Discuss the Main Idea

Lead a discussion on what students know about the ocean floor. Many students may think the ocean floor is a flat, featureless plain. Ask:

- What does the ocean floor look like? Possible answer: The ocean floor has mountains, canyons, and plains that look like features on land.

- Explore the Main Idea

Activity Obtain a bathymetric map of one of the world's oceans. This type of map shows all the various depths of a body of water. Show students as a class the different features labeled on the map, including mountains (mid-ocean ridges), trenches, abyssal plains, seamounts, and istands. Help students see that a map of the ocean floor has features that are similar to a map of Earth's land surfaces.

- Use the Visuals

Have students refer to the visuals over the next two pages, which show examples of landforms and ocean floor features. Ask:

- What land feature is similar to an ocean trench? Possible answers: a valley or canyon
- Which ocean bottom feature is similar to a plain? an abyssal plain

What land features are

in the oceans?

Did you know that there is land below the ocean? The land below the ocean is called the ocean floor. The ocean floor has many features similar to land features. If you could travel there, you would find mountains, valleys, and canyons. You would even see plains.

The ocean floor begins at a coast where dry land borders the water. Here you find a continental shelf. A continental shelf is like a huge plateau. It lies under the ocean at the edge of a continent. About 80 kilometers (50 miles) away from the coast, the continental shelf slopes down steeply.

Leveled Questions

EXTRA SUPPORT

 Which ocean floor feature begins at the coast? the continental shelf Which ocean floor feature follows the continental shelf as you continue to move away from a continent? abyssal plain
ENRICHMENT

Over which ocean floor feature would the ocean be the shallowest? over the continental shelves Over which would the ocean be the deepest? the trenches

An abyssal plain (uh•BIH•sul PLAYN) begins a little farther out. An abyssal plain is wide and flat. It stretches thousands of kilometers across the ocean.

A trench is another feature you might recognize. A trench is a canyon on the ocean floor. Trenches are the deepest parts of the ocean floor. The deepest trench is the Mariana Trench in the Pacific Ocean. It is almost 11 kilometers (7 miles) deep.

Quick Check

3. What do you think you would find on the abyssal plain? Hint: Think about what covers a river's bottom.

Possible answers: rocks; remains of dead plants and animals that drift to the bottom

Develop Vocabulary

Have students write a paragraph that uses the vocabulary words introduced in the lesson so far (ocean, continent, landform), and explain how they are related to the features on the ocean floor.

Classroom Equity

Encourage all students to get involved. To encourage more students to volunteer answers in this lesson, wait three to five seconds before calling on someone to answer a question. As an experiment, have students write their names on an index card, then take the deck, shuffle it, and turn up the cards one by one until you have called on each student.

What are the layers

of Earth?

- Discuss the Main Idea

Use a peach cut in half to model Earth's layers. The peach skin is the crust, the fruit is the mantle, the outer pit of the peach is the outer core of Earth, and the peach seed is the inner core of Earth. Ask:

- What is the thickest layer of Earth? the mantle

Develop Vocabulary

crust Scientific vs. Common Use A common use of the word crust is to describe the hard outer part of bread. The scientific use of crust is the thin, solid outer Layer of Earth.
mantle Scientific vs. Common Use The scientific use of the word mantle means the thickest layer of Earth. A common use of the word is a cape or a cloak.
core Word Origin The word core is from the Latin word cor, which means "heart."

What are the layers of Earth?

Have you ever eaten a hard-boiled egg? If so, you know that an egg has several layers. It has a thin shell, a white part, and a yolk.

Like an egg, Earth has several layers. The continents and ocean floor make up Earth's outermost layer, called the crust. The crust is Earth's thinnest and coolest layer.

The layer below the crust is the mantle. Part of the mantle is solid rock. Part is nearly melted rock that is soft and flows. It is a lot like putty.

At the center of Earth is the core. The core is the deepest and hottest layer of Earth. The outer core is melted rock. The inner core is solid rock.

Quick Check

4. Which of Earth's layers is like the shell of an egg? Why?
the crust; because it is very thin like an eggshell covering an egg

- Address Misconceptions

A common misconception is that all of Earth is molten except the crust. In fact, only the outer core is molten and liquid. The mantle is hotter than the crust and can flow like putty, but it is not liquid, molten rock.

Homework Activity

Earth's Interior
Have students draw a diagram of Earth's interior. Make sure they label all of the layers. Students might want to make the layers different colors. Have students research the characteristics and thicknesses of each of the layers to go along with their drawings. Students can use encyclopedias, or other reference materials.

3 Close

Lesson Review

- Discuss the Main Idea

Have students review their answers to the questions throughout the lesson. Address any remaining questions or misconceptions.

- Visual Summary

Have students summarize key points of the lesson in the Visual Summary. The titles in each box will help guide students to the topics they should summarize.

Visual Summary

Complete the lesson summary in your own words.

Earth has many
 land features and water features.

Most of Earth is covered by water.

The ocean floor has features similar to Earth's
land features.

Earth has three main layers-the crust, the mantle, and the core.

Formative Assessment

Approaching Have students draw a picture of the inside of Earth.

On-Level Have students draw and label a picture of the layers inside Earth.
Challenge Have students include in their drawings the thickness of each layer and what material makes up each of Earth's Layers.

Think, Talk, and Write

11 Vocabulary Which landform is a deep. norrow valley with steep sides and a river flowing through itf

c canyon

2 Main Idea and Details What are the llayers of Earth?

3 Critical Thinking Where would you be if you were at the deepest place on Earth's crust?

वп оcean trench

4 Test Prep All of the following are Landforms except
A an island.
B a canyon.
c. aplain.
(D) mantile.

Essential Questionil What shapes can the land take?
Earth takes many different shopes. It forms mountains, valleys, plains,

Focus on Skills

Objective

- Make a model of a cave.

Materials centimeter ruler, scissors, several pieces of tan or white construction paper, black croyon, empty shoe box or other small box, clear tape

Plan Ahead Gather enough materials for each small group.

EXTEND This activity will teach students how to make a model of a cave.

Inquiry Skill: Make a Model

- Learn It

- Explain to students that a model is made to represent something that is otherwise too large, too small, or too difficult to study.
- Models can represent an object, an event, or a process.

Focus on Skills

Inquiry Skill: Make a Model

You just learned about many landforms. Some of them are found on land. Some lie under the ocean. In some places a limestone cave forms below the ground. It forms when water seeps into the ground and changes rock. This can take millions of years. You can make a model to show a cave.

Learn It

When you make a model, you build something to represent, or stand for, a real object or event. A model can be bigger or smaller than the real thing. Models help you learn about objects or events that are hard to observe directly. Maps and globes are two examples of models.

Integrate Reading

Report on Cave Features
Ask students to research the features that are found in caves, such as stalagmites and stalactites. Ask:

- What features commonly form in caves?

Tell students to write a short report on their research. Have volunteers read their reports to the class.

Try It

In this activity, you will make a model of a cave.
Materials ruler, scissors, tan or white construction paper, crayon, shoe box or other small box, clear tape

(1) ΔBe careful. Cut a piece of construction paper that is a little smaller than the size of the back wall of the box.

On the paper draw limestone rocks like the ones shown. Tape the paper to the box's back wall.
3 Draw more limestone rocks on another piece of construction paper. Draw a flap for each rock.
(4) Be careful. Cut out each rock and its flap. Bend the flap for each rock. Tape each rock inside the box.

Now use your model to answer these questions:
How would you describe the shapes of rocks in a limestone cave?

Some look like straws, others look like pillars.
Where do the rocks form?
Rocks form mostly on the ceiling and floor of a cave.

Apply It

Make a model of a landform that you learned about. It can be a landform on the ocean floor or one on land. What details do you want to show? Which materials will you use to help you model these details?

Try It

(1) Be Careful! Make sure students are very careful cutting the box and construction paper.
2) Encourage students to make their caves as realistic as possible.
(4) Make sure students have drawn a flap on each rock.

- Apply lt

Have students select another landform discussed in the lesson. They will then make a model of the landform. Tell students that after they have selected a landform, they need to gather all the materials needed to make their model. Before they begin building the model, they should decide what details they want to show. Help any students that are having problems finding materials for their models.

Lesson 2 Sudden Changes to Earth

Essential Question

How can Earth's surface change quickly?

Objectives

- Describe earthquakes and volcanoes and identify their effects.
- Describe the effects of londslides and floods.

Reading Skill Cause and Effect

You will need a cause-and-effect grophic organizer.

(24) FAST TRACK

Lesson Plan When time is short, follow the Fast Track and use the essential resources.

1 Introduce
Look and Wonder

Use the Visuals

3 Close
Think, Talk, and Write

Teacher Notes

Lesson 2 Sudden Changes to Earth

Objectives

- Describe earthquakes and volcanoes and identify their effects.
- Describe the effects of landslides and floods.

1 Introduce

- Assess Prior Knowledge

Ask students to discuss what they know about earthquakes, volcanoes, landslides, and floods. List any questions students hove on the board. Ask:

- Which of these events con occur in our area? Answers will vary depending on the area of the country.

Warm Up

Start with a Visual

Have students study a picture of damage from an earthquake, volcanic eruption, landslide, or flood.
Encourage students to discuss what damage resulted from the event shown. Ask:

- How could this damage have occurred?
- How could this damage have been made less severe?

Look and Wonder

One minute, cars raced across this road in Oakland, California.
Then the land shook. Part of the road collapsed. What might cause such a sudden change?

Possible answer: Shaking from an earthquake could cause the damage.
\qquad
\qquad

Look and Wonder

Invite students to share their responses to the Look And Wonder statement and question:

- Part of the road collapsed. What might cause such a sudden change?

Have students think about what happens when an earthquake occurs. Ask:

- Why do you think an earthquake causes houses and buildings to shake and possibly fall? Parts of these buildings are underground or sitting right on the ground. When the ground moves, buildings on top of it move also.

Write ideas on the board and note any misconceptions that students might have. Address these misconceptions as you teach the lesson.

Insenfial Orestion

Have children read the Essential Question. Tell them to think about it as they read through the lesson. Advise children that they will return to this question at the end of the lesson.

Explore

Plan Ahead The activity may be done in small

 groups of students if enough materials are available. Make sure students do not tap the pan hard enough to spill the sand.Purpose To model what happens when land suddenly moves.

Structured Inquiry

(1) Make a Model If the sand will not easily form a mountain, dampen it slightly.

3 Communicate Drawings should show the features of the land surface and the location of "trees."

Explore

How does sudden movement change the land?

Purpose

Model what happens when the land suddenly moves.

Procedure

Make a Model Fill a pan halfway with sand. Make a mountain with the sand.
(2)

Place blocks in the sand to model buildings. Add twigs to model trees.Communicate Draw the land's surface.

Experiment What will happen if you tap the pon gently? Try it.

- aluminum pan

- sand

0

Answers will vary, but tapping the pan
gently will cause some small changes.

Experiment What will happen if you tap the pan harder? Try it.

Answers will vary, but tapping the pan

harder will cause more changes.

Draw Conclusions

6. Infer How can the sudden movement of land change the land?

Possible answers: Buildings and trees can fall. Hills and mountains can

crumble.

Explore More

Experiment Different rocks and soils make up land. Does sudden movement change all land the same way? Make a plan to find out. Try it.

Open Inquiry

Design a test to discover if liquid is affected by sudden land movement.
My question is: \qquad

How can I test it:
Answers will vary.

My results are: Answers will vary.

ENGAEE EXPLORE

Guided Inquiry

Explore More

Experiment Students can replace the sand with a mixture of soil and rock and then tap it to compare how different materials are affected when land moves.

Open Inquiry

Ask students to think about whether liquid material will be affected differently by sudden movements of the land. Have them form a hypothesis and design an experiment to test it. Ask:

What might happen to water if the land moved suddenly?

Alternative
 Explore

How are buildings affected by movement?
Materials small blocks, glue, toothpicks, rubber bands Have students build three "houses." One will be made using the blocks alone, the second with blocks held together by rubber bands, and the third from toothpicks glued together. After the building models are done, have students test how the buildings are affected by sudden movements.

Teach

Recd and Respond

Main Idea As students read the lesson, have them write how earthquakes, volcanoes, landslides, and floods can change the land.

Vocabulary As students read the lesson, have volunteers write definitions of each vocabulary word on the board.

Reading Skill Cause and Effect Graphic Organizer Have students fill in the Cause and Effect graphic organizer as they read through the lesson. They can use the Quick
 Check questions to identify each cause and effect.

What are earthquakes?

- Discuss the Main Idea

Ask students if they have ever been in an earthquake or seen the effects of one on TV. Ask:

■ What happens during an earthquake? Possible answers: The ground shakes; buildings and highways can move and crumble.

- Where do earthquakes happen? They can happen anywhere.

Recdicnd Respond

What are earthquakes?
Some events can change Earth's surface in less than a minute.
One example is an earthquake (URTH-kwayk). What causes an earthquake? Why does it change the land? The answers are found under the ground.

Earth's Moving Crust

Earth's outside layer, the crust, is made up of huge slabs of rock. You might think that slabs of rock can not move. They do move, however. Rocks deep below the ground can slowly slide past each other. They can press against each other. They can pull apart too. These movements can cause rock to bend and snap back like a bent stick. This causes an earthquake. An earthquake is a sudden movement of the rocks that make up Earth's crust.

310
EXPLAIN

Quick Check

1. What can happen when huge slabs of rock in Earth's crust move?

Possible answer: An earthquake

can happen.

When an earthquake happens, the ground shakes, or vibrates.
The vibrations travel out from the earthquake's center through the land. Some earthquakes are very weak. They are not even noticed. Some feel like a truck rumbling by. Others are very strong. Earthquakes can crack roads. They can cause buildings and bridges to fall. They can even cause parts of mountains to collapse.

Quick Check

2. You drop a pebble in water. What happens to the water?
How is this similar to what happens to the crust during an earthquake?

Possible answers: The water
moves in waves in all directions
from where the pebble hits
the water. In an earthquake,
vibrations move out from the
earthquake in all directions.

Differentiated Instruction

Leveled Activities

EXTRA SUPPORT Have students write in their own words what an earthquake is and how it can affect the Land.

ENRICHMENT

Have students research a major earthquake in the world.

Use the Visuals

Have students carefully study the diagram showing where an earthquake originates. Earthquakes begin at a point deep inside Earth where rocks break, usually along a fault. Waves of energy or vibrations travel outward from this point. The point where the earthquake starts is called the focus. Ask:

■ Where do earthquakes start? Possible answer: deep inside Earth

- Where do the vibrations from an earthquake travel? in all directions away from the starting point of the quake

Develop Vocabulary

earthquake Remind students that the word quake means "to shake." The word earth means "ground or soil." An earthquake shakes the ground.

What are volcanoes?

Discuss the Main Idea

Have students discuss what they know about volcanoes. Ask:

- What is a volcano? Possible answer: a mountain that shoots out lava and ash
- What is the difference between magma and lava? Possible answer: Magma is melted rock inside Earth, and lava is melted rock that flows on the surface.

Develop Vocabulary

volcano Word Origin The word volcano is from the Italian word vulcano, which means "burning mountain."
magma Remind students that magma is melted rock inside Earth.

Lava Remind students that once magma reaches Earth's surface, it is known as lava.

- Address Misconceptions

A common misconception is that volcanoes are always active. In fact, many volcanoes on Earth have been inactive for very long periods of time. Some volcanoes also have relatively quiet eruptions, oozing lava slowly.

FACT Volcanoes are not always active.

What are volcanoes?

A volcano (vahl.KAY•noh) is a mountain that builds up around an opening in Earth's crust. Sometimes a volcano explodes. Like an earthquake, this event can change the land quickly.

Volcano Formation

You learned about Earth's layers, the crust, mantle, and core. Parts of the mantle and crust have melted rock called magma. Sometimes magma moves up through a large crack in the crust and flows onto land. Melted rock that flows onto land is called Lava. Lava, rocks, and ash are forced out onto Earth's surface. They pile up in layers and form a mountain. Sometimes a volcanic mountain forms in just a few years.

> FACT Volcanoes are not always active.

Effects of Volcanoes

Sometimes, lava oozes from a volcano slowly. The lava hardens and the mountain gets bigger. At other times, lava is forced out of a volcano in an explosion. When this happens, a large part of the mountain can be blown away. Materials from volcanoes can cause a lot of damage to buildings. They can harm living things too.

Quick Lab

To create a model of a volcano, do the Quick Lab in the back of the book.

Quick Check

3. What happens when lava flows out of an opening in Earth's crust?

A volcanic mountain forms.
4. Why are some volcanoes a danger to people?

Possible answers: Lava is very
hot and can burn people. Ash and gases can be harmful to people.

Differentiated Instruction

Leveled Questions

EXTRA SUPPORT
What is lava? melted rock that flows onto the land surface

ENRICHMENT

 How can volcanoes erupt? Possible answers: Some volcanoes slowly ooze Lava. Others violently explode lava, rocks, gases, and ash.A Model Volcano
See the Quick Labs in the back of the book.
Objective Model volcanic eruptions.
Materials samples or travel tubes of toothpaste, newspapers, thumbtack

Plan Ahead Obtain several samples or travel tubes of toothpaste. Cover desks with newspaper before handing out the toothpaste. Before handing out the toothpaste to each group, make a small hole near the bottom of the tube using the thumbtack.
Pierce the tube gently to prevent the paste from oozing out.

Be Careful! Students should wear aprons and safety goggles.
(3) Toothpaste leaves the tube; the toothpaste is a model of magma reaching Earth's surface and erupting.
(4) Possible answer: Depending on how hard the tube is pressed, the toothpaste (lava) can either ooze from or explode from the hole (volcano).

What are landslides and floods?

- Discuss the Main Idea

Ask students to discuss what they know about landslides and floods. A review of how gravity pulls on all objects on Earth may help some students better understand landslides. Ask:

- What is a landslide? Possible answer: a rapid movement of rocks and soil down a hillside
- How can a flood cause damage? Possible answer: by washing away homes, buildings, bridges, and roads
- What force pulls a landslide down a hillside gravity

Develop Vocabulary

landslide Scientific vs. Common Use This word is often used to indicate a huge victory, usually in an election. The scientific use of the word is to describe a rapid movement of rock and soil downhill.
flood Word Origin The word flood comes from the Old English word flod, which means "a flowing of water, river, sea."

What are landslides and floods?

Have you ever seen a pile of rocks at the bottom of a mountain? How did the rocks get there? Part of the answer is gravity. Gravity is a pulling force that acts on all objects. Gravity can cause a landslide. A landslide is the rapid movement of rocks and soil down a hill. A landslide can cause a hill or mountain to change quickly.

Heavy rains and melting snow can quickly fill a river. When water flows over a river's banks, or sides, there is a flood. A flood is water that flows over land that is usually dry. Flood waters are very strong. They can change land quickly by washing it away.

4 This mountain was quickly changed by a landslide.

- Quick Check

5. What effect do Landslides have on land?

Possible answer: They can
cause mountains and hills to
become smaller.

Homework Activity

Locate Sudden Changes to Earth

Have students use magazines, newspapers, or reference books to find an example of a recent earthquake, a volcanic eruption, a landslide, and a flood. Have them write a brief description of each event. Students should include the date and location of each example. Students may want to include one map with all the locations on it. Pictures of the damage caused by the events would also be useful.

3 Close

Lesson Review

- Discuss the Main Idea

Have students review their answers to the questions throughout the lesson. Address any remaining questions or misconceptions.

- Visual Summary

Have students summarize key points of the lesson in the Visual Summary. The titles in each box will help guide students to the topics they should summarize.

Visual Summary

Complete the lesson summary in your own words.

When lava, ash, and rock are forced from a volcano, the land can change quickly.

Landslides can quickly change the shape of a
hill or mountain. Floods can wash land away.

Formative Assessment

Approaching Have students list the four ways in which events mentioned in the lesson can cause sudden changes to Earth's surface.
On-Level Have students describe what an earthquake, a volcano, a flood, and a landslide are and how they change the land.

Challenge Have students research a recent earthquake or flood. Students should write a short report on the event.

Think, Talk, and Write

(1) Vocabulary What is a volcano?
a mountain that forms from melted rock
2. Cause and Effect What causes earthquakes to happen?

Sudden movement of rocks in Earth's crust.	

3 Critical Thinking What do earthquakes, volcanoes, landslides, and floods have in common?

Possible answers: They all change the land, can damage property.
and can be harmful to living things.

0 Test Prep Which event can be caused by heavy rains?
(A) flood

B earthquake
c volcanic eruption
D drought

EssentialQuestion How can Earth's surface change quickly?

Earth's surface can change quickly because of an earthquake, a volcanic
eruption, a landslide, or a flood.

Objective

- Identify cause and effect in an arlicle.

Slide on the Shore

Genre: Nonfiction

- Why do you thirk the author wrote the article? Possible answer to tell about the things people do to prevent Landslides

Before Reading

Have students share what they know about landslides. Hove students took at the main photo. Ask

- Why do you think landslides are dangerous to poople who live on clifts like this? Possible answer: because their houses can be damaged or destroyed by landslides
- Why do you think people build their homes on cliffs if there is a danger of landslides? Passible answers: because they like living near the ofean; becouse of the beautiful view

During Reading

Explain to students that they are reading about dfferent methods people use to prevent landslides. Encourage students to think how each method helpe to prevent landslides. Ask

- Why do you thirk the rock woll might be used for landslide prevention? Pussible answer: Becouse it stops the soil from moving.
- How do terraces help prevent tondslides? The terraces keep rodes and water from flowing to the botton of the clift
- How do shrube prevent landslides? Shrubs and other plants help keep the soil in place.

Ask students to describe another method of landslide prevention

ILIDE on the Shore

The weritem oorst of the United Soun la a becutiful place to lve. The viovis from its dits are owesome. Heavy nains, melting snow, and corstruation con weoken these clift, howewer. Then landades moy hopen.

There ore some tinns people can do to help prevent landslides. Pople con carve stops of lland colled terrores into the clith Roche ond Wolke stay on the terraces and do not thon to the bottom of the oflt

People can olse usp drains ond covers to keep the land dry Then con plant shrubs and other plonts to hep lueep the soil in ploot.

People can build eing 星 hep down a hill. For sample, woils of rock end conceute (xin suport acliff form below Didhes con diret woter around buidnge. All of thest thing help beep people |king on or around clift hafe

LA Support

Decode Revew cuuse and effect with students Howe students wark fogether to plek three causes and thelr effects in the article. Expin i temas studenter my not know We fermeces in ploce, and direct water.

BrfinkNE Students can glve onc- or two-word responses to questons obout the photos, such as, What is thes wall mode of What can it prevent?

IkTuMEXI Students can say a phrase or sentence about ane thing people can do to prevent landsludes.

SxhHoti Students can explaln the couses of Landsildes and expinin at lexts ane thing people can do to prevent them.

After Reading

Remind students that the cause is what makes things change and the effect or effects are the changes that happen. Write heavy rains, melting snow, and construction on the board. Explain that these are causes. Ask students to identify the effect or effects. Possible answer: The cliffs weaken, landslides happen, rocks and water are pulled to the bottom of the cliff. Display a cause and effect graphic organizer. Use students' responses to complete the organizer.

Have students look through the article to find other cause-and-effect relationships to add to the chart.

Integrate Reading

Design a Home

Ask students to design and draw a coastal cliff home. Then have them write a sentence to tell how they will prevent landslides from damaging their home. Ask: Why did you choose that method of landslide prevention? What are some of the problems you might face?
Have students share their plans with the class, including the positive and negative aspects of using the prevention method they chose.

Lesson 3 Weathering and Erosion

Essential Question

How can Earth's surface change slowly?

Objectives

- Describe and identify the forces that cause weathering and erosion.
- Analyze how people change the land.

Reading Skill Draw Conctusions

You will need a draw conclusions graphic organizer.

(28) FAST TRACK

Lesson Plan When time is short, follow the Fast Track and use the essential resources.

Look and Wonder

Develop Vocabulary Use the Visuals

Teacher Notes

Lesson 3 Weathering and Erosion

Objectives

- Describe and identify the forces that couse weathering and erosion.
- Analyze how people change the land.

1 Introduce

- Assess Prior Knowledge

Hove students discuss how they think Earth's surface is changed by flowing water, wind, ice, and gravity. Ask:

- How can flowing water change Earth's surface? Possible answer: Flowing water can wosh oway loose rock and soil.
- What happens to an object that is left outside, exposed to rain, snow, sunlight, and freezing temperatures? Possible answer: It will become worn, rusted, or faded, depending on what it is mode of.

Warm Up

Start with a Demonstration

Prior to class, fill a plastic container full of water and seal the top in place. Freeze the container. As the water expands during freezing, the top should be displaced. For the class, place next to the frozen container an identical plastic container filled to the top with the same amount of water. Explain to students that both containers are the same size and contain the same amount of water. The frozen container was filled to the top with water, and when you sealed it, the top fit. Ask:

- What happened when the water froze? Possible answer:

The water expanded. When the water expanded, it forced open the container top.

- What do you think happens when water freezes in a crack in a rock? Possible answer: When the water expands, the crack gets deeper, wider, or longer, increasing in size.

Look and Wonder

This canyon was once flat land. Today, parts of the Grand Canyon are nearly 1.6 kilometers deep. How do canyons form?

Possible answer: Moving water in the river cut the canyon.

How can Earth's surface change slowly?

Look and Wonder

Invite students to share their responses to the Look and Wonder statement and question:

- This canyon was once flat land. Today, parts of the Grand Canyon are nearly one mile deep. How do canyons form?

Write ideas on the board and note any misconceptions that students may have. Address these misconceptions as you teach the lesson.

Tlosentiol|Ouestion

Have children read the Essential Question. Tell them to think about it as they read through the lesson. Advise children that they will return to this question at the end of the lesson.

Plan Ahead Make sure the grains in the sandstone pieces are loose enough to break off when the rocks are shaken in the jars. Pieces of siltstone or shale may also be used. Make sure the plastic jars are transparent enough so that the students can see the rocks.

Purpose Shaking the jars simulates flowing water in a stream, weathering and eroding rocks.

Structured Inquiry

Form a Hypothesis

3 Use Variables Make sure the jar Lids are on tightly.
(4) Use Variables Have one student act as the timekeeper.

How can rocks change in moving water?

Form a Hypothesis
What happens to rocks when they move around in water?
Write your answer in the form "If I shake rocks in water, then..."
Possible hypothesis: If I shake rocks in water,
then the rocks will break into smaller pieces.

Test Your Hypothesis

(1)
Measure Label three jars A, B, and C. Put the same number of similar-sized rocks in each jar. Using the measuring cup, fill each jar with the same amount of water. Put a lid on each jor.
2) Let jar A sit. Do not shake it.
(3) Use Variables Shake jar B hard for 2 minutes.

Then let the jar sit.

Use Variables Shake jar C hard for 5 minutes. Then let the jar sit.

5 Observe Use a hand lens to observe the rocks in each jor. What happened? Did the results support your hypothesis?

Jar A: rocks were the same; Jar B: few
bits of broken rocks in water; Jar C: more
bits of broken rocks in water than in Jar
B. Answers about students' hypotheses
will vary.

322
EXPLORE

Draw Conclusions

6 Infer How can rocks change in moving water?
Possible answer: Moving water can cause rocks to bang against each other, breaking off pieces.

Explore More

Experiment Would the results be the same if different rocks were used? Make a plan and try it. Answers will vary.
\qquad
\qquad
\qquad

Open Inquiry

Design a test to determine if rocks can break easier without water in the jar. My question is: Answers will vary.

How can I test it: Answers will vary.

Guided Inquiry

Explore More

Experiment Students should see that some types of rocks break apart more easily than others.

Open Inquiry

Ask students to think about whether rocks would break more easily without water in the jars. Have students formulate a question on this topic and then design and carry out an experiment to answer it. Ask:

Will the same kinds of rocks we used in this activity break apart more easily without water?

Alternative
 Explore

Do all rocks weather at the same rate?

Materials plastic jar, lid, pieces of sandstone and granite, water
Have students test the weathering of soft rocks (sandstone or shale) compared with harder rocks (granite or marbles) in a stream. Place some softer rock pieces in the jar along with some harder rocks. Add water and shake the tightly closed jar for five minutes. Have students observe what happened to the various types of rocks.

Teach

Recdand Respond
Main Idea As students read the lesson, have them write how weathering and erosion can cause changes to Earth's surface over time.

Vocabulary Have students compare and contrast weathering and erosion.

Reading Skill Draw Conclusions Graphic Organizer Have students fill in a Draw Conclusions graphic

Txatim	Smatamex

What is weathering?
 - Discuss the Main Idea

Have students discuss the changes they have observed in Earth's surface. Ask:

- What are some causes of weathering? Possible answers: running water, wind, rain, melting snow, ice, plants, animals
- How can plants and animals cause weathering? The roots of plants split rocks apart. Animals can uncover rocks while digging in the ground. Once uncovered, the rocks begin to weather.

Read cind Respond What is weathering?

You might think that hard rocks can not change or break, but they do. Large rocks break into smaller rocks. Small rocks break down into sand and soil. The breaking down of rocks into smaller pieces is called weathering (WETH•ur•ing). Weathering usually happens so slowly that you do not notice it. The weathering of rocks can take millions of years.

What causes weathering? Running water, wind, rain, and temperature changes are some things that break down rocks.

Running water and wind pick up small rocks. These rocks scrape against other rocks. This scraping slowly wears away rocks.

Quick Check

1. A sidewalk crack became wider during a cold winter. Why?

Rainwater or melted snow
got into the crack, froze, and
caused the crack to widen.
2. Explain how people can cause weathering.

Possible answer: People use
machines that dig into the
ground, break up rocks, and
expose them to weathering.

This rock, called a ventifact, has been weathered by wind.

Develop Vocabulary

weathering Scientific vs. Common Use The word weather is commonly used to state what is happening in the atmosphere. In science, weathering describes how rocks are broken down into smaller pieces.

Science Background

Types of Weathering There are two types of weathering: physical weathering and chemical weathering. In physical weathering, rocks are broken into smaller pieces, but the chemical composition of the rocks stays the same. Freezing and thawing and abrasion cause physical weathering. In chemical weathering, the rocks' chemical composition changes. Oxidation or rusting is a form of chemical weathering.

These hoodoos have been worn mostly by water that freezes and then thaws inside cracks in the rocks.

This tree continues to break this rock apart. \mathbf{V}

Rain and melting snow can enter the small cracks in rocks. When the water freezes, it expands, or takes up more space. This widens the cracks. Then the ice thaws and becomes liquid water again. Over time, repeated freezing and thawing breaks rocks apart.

Living things can cause weathering. Plants can grow in the cracks of rocks. Their roots eventually split rocks apart. When animals dig in the ground, they can uncover buried rocks.
The uncovered rocks can then begin to weather.

- Explore the Main Idea

ACTIVITY Take students outside where they can see a sidewalk or parking lot that has been broken up by weathering. Explain that tree roots or freezing and thawing can, over time, break up the hard concrete or asphalt. Have students draw an example of tree roots breaking up a sidewalk.

- Address Misconceptions

Students may have a misconception that rocks are unchanging. In fact, over time, even hard rocks such as granite can be weathered. Abrasion by wind and rain, the chemicals in polluted air, and acid rain can dramatically weather even hard rocks.

Differentiated Instruction

Leveled Activities

EXTRA SUPPORT Have students find examples of weathering around the school or their home. Have students describe in their own words at least three examples of weathering.

ENRICHMENT
 Have students research how sand blowing

 in deserts can weather rocks. Have students make a poster explaining weathering by wind. Ask volunteers to show the posters to the class.
What is erosion?
 - Discuss the Main Idea

Ask students to discuss how they think rocks can be moved from one place to another over Earth's surface. Ask:

- What forces can move rocks on Earth's surface? Possible answers: moving water, wind, ice, and gravity
- When water flowing over the surface slows down, what happens to the rocks carried by the water? Possible answer: The rocks are dropped or deposited.

Develop Vocabulary

erosion Word Origin The word erosion is from the Latin word erodere, which means to "gnaw away."
glacier Word Origin The word glacier comes from the Latin word glacies, which means "ice."
deposition Word Origin This word comes from the Old French word deposer, meaning "put," "place."

Use the Visuals

Have students study the photographs. The photographs show examples of erosion by moving water, gravity, and glaciers. Ask:

■ How does gravity cause erosion? Possible answer:
Gravity pulls rocks and soil downhill.

- How does wind cause erosion? Wind can pick up some pieces of weathered rock and deposit them in a new place.

LA Support

Discuss Write rivers and streams on the board. Discuss the role rivers and streams play in the movement of rocks on Earth. Write words in random order on the board and have students put them into a sentence. For example: moves, Flowing, small, water, rocks becomes "Flowing water moves small rocks."

BEGINNING
Students can point to or name pictures of rivers, streams, and oceans.
intermediate Students can use phrases or short sentences to describe rivers and streams.

ADVANCED

Students can use complete sentences to describe how rivers and streams move rocks, and how the size and amount of rocks carried by the stream would change if the stream began to flow faster.

A The rocks in this stream were carried here by moving water.

What is erosion?

Broken rocks are sometimes moved to other places. Erosion (ih•ROH•zhun) is the wearing away and movement of weathered rock. Moving water, wind, and glaciers (GLAY•shurz) all cause erosion. A glacier is a mass of ice that moves slowly across the land. Gravity also causes erosion. Gravity pulls weathered materials downhill.

Erosion can happen slowly or quickly. Floods can cause erosion quickly when rivers overflow their banks. Glaciers cause erosion slowly as they move across the land.

Moving Water and Wind

Moving water in rivers, streams, and ocean waves picks up rocks and sand. The rocks and sand can be carried far away. Then they are dropped in new places. Deposition (de•puh•ZIH \cdot shun) is the dropping off of weathered rock.

Wind also picks up small bits of weathered rocks. When the wind slows down, they are deposited.

The rocks here were pulled down by gravity.

Glaciers

As it moves, a glacier picks up and carries away rocks of all sizes. The ice at the bottom of a glacier freezes onto rocks. As the glacier moves, it tears rocks out of the ground. A glacier can move rocks the size of a house. As a glacier melts, it leaves the rocks in a new place.

Quick Lab

To learn how materials settle, do the Quick Lob in the bock of the book.

Quick Check

3. Compare erosion and weathering.

Both erosion and weathering

involve breaking down rock.

Materials Settle

See the Quick Labs in the back of the book.
Objective Observe how various materials settle.
Materials potting soil, sand, small pebbles, plastic measuring cup, Large plastic jar with Lid, newspaper, water

Plan Ahead The Large plastic jar must have a wide mouth and be transparent. Cover the desk with the newspaper before filling the jar.

Be Careful! Do not use a glass jar. It might break when shaken.

3 Materials settle in layers on the bottom by weight. The heaviest materials settle out first on the bottom, and the lightest materials settle on top.
(4) Eroded materials are dropped off as a river slows. The heaviest pieces are dropped off first. As the river slows more, lighter materials are dropped off.

- Explore the Main Idea

ACTIVITY Explain to students that a glacier erodes rock similarly to how a bulldozer scrapes up material. The ice scrapes up rocks and soil from underneath the glacier and from the sides of the glacier. Have students find pictures that show the piles of material along the sides and front of the ice.

Differentiated Instruction

Leveled Questions

EXTRA SUPPORT What happens to rocks carried by ice when a glacier melts? They are dropped when the ice melts

ENRICHMENT Suppose you see a giant granite boulder in an area where granite is not common. How could the boulder have been moved to that area? Possible answer: by a glacier

How can people change the land?

- Discuss the Main Idea

Have students discuss the ways people can change the land. Write a list of students' ideas on the board. Ask:

- What are some ways people can change the land? Possible answers: cutting down trees; building bridges, buildings, homes, and roads; draining ponds and swamps; plowing up land for farms; digging mines

4. Sheikh Zayed Road in the early 1980s.

How can people change the land?

People change the land too. Some changes are very small, like digging a hole in your backyard. Other changes are much larger.

In some places trees are cut to build roads, stores, and homes. If trees are not replanted, soil can wash away. In other places ponds and swamps are drained. The dry soil left behind can blow away. In still other places, land is dug up to reach valuable rocks.

328
 EXPLAIN

Homework Activity

Illustrate Erosion

Have students use magazines, newspapers, or reference books to find examples of erosion by moving water, wind, glaciers, and gravity. Have them write a brief description of each example of erosion. Students should draw a picture or use a copy of a photograph to illustrate each example of erosion. If possible, direct them to local examples, such as information about a nearby landslide.

Close

Lesson Review

- Discuss the Main Idea

Have students review their answers to the questions throughout the lesson. Address any remaining questions or misconceptions.

- Visual Summary

Have students summarize key points of the lesson in the Visual Summary. The titles in each box will help guide students to the topics they should summarize.

Formative Assessment

Approaching Have students draw a picture of a glacier. On-Level Have students draw a picture of a glacier and label areas where erosion is taking place and where rocks are being dropped off.
Challenge Have students research how rocks frozen in a glacier scrape and erode the surface over which the glacier moves. Have them write a report on their findings.

Visual Summary

Complete the lesson summary in your own words.

Weathering breaks down larger rocks into smaller rocks.

Erosion is the weathering and movement of
weathered rock from one place to another.

People change
the land in many ways.

Think, Talk, and Write

0 Vocabulary What is deposition?
Deposition is the dropping off of weathered rock.
(2) Draw Conclusions How do rocks and soil erode?

Text Clues	Conclusions
Rocks and sand may be carried far away by water and wind.	They build up Earth's surface in the new place.
Then they are dropped in new places.	They can become weathered and eroded even more.

(3) Critical Thinking How do weathering and erosion together change land?

Weathering breaks down rocks into smaller pieces. Erosion moves the weathered
pieces to another place by forces such as wind, water, ice, and gravity.
(4) Test Prep All of the following can cause weathering to rocks except
A ice.
(B) light.

C wind.
D plants.

Math in Science

Objective

Estimate the product of one- and two-digit numbers.

Estimate a Glacier's Change

Learn It

Review rounding to the nearest whole number with students. Tell them to look at the first digit after the decimal point. If it is a number Less than 5 , they simply remove the decimal part of the number. If the digit is 5 or greater, they remove the decimal part and increase the whole number by 1. Ask:

- If we multiply the rounded number instead of the exact number, what will we get? an estimate of the exact answer

Try It

Write each of the following problems on the board as you ask the questions:

- If we want to estimate the sum of 112 and 43 , what should we add? 100 and 40
- If we want to estimate the product of 24 and 9 , what should we multiply? 20 and 10

Integrate Math

Average Temperature

- Have students research to find Earth's average temperature last year and in several prior years.
- Tell them to use these numbers to write a math problem such as the one concerning the Mertz Glacier.
- Have students exchange papers and solve each other's problems.

Math in Science

Estimate a Glacier's Change

Sometimes a glacier reaches the ocean and floats on top of it. This long. thin mass of floating ice is called an ice tongue.

The Mertz Glacier is in Antarctica. It has a tongue. Since 1963, melting has caused the glacier's tongue to get longer. It "grows" about 0.9 kilometers each year. If this rate stays the same, about how much should the tongue grow over the next 5 years?

4 The Mertz Glacier's tongue is about so kmiong.

Solve It

About how much should the glacier's tongue grow in 20 years? If the tongue grows longer than you estimated, what might this tell you about the rate at which the tongue is growing?

About 20 kilometers; the glacier

is melting faster than it has in the past.

ENGMEI
 ExplonE
 ERLAK =

Apply lt

- Write several similar problems on the board. Include all four operations.
- Tell students not to find answers to these problems or even estimates of the answers. Tell them to instead write down what numbers they would add, subtract, multiply, or divide in order to find an estimate of each answer. Have students write their responses on a sheet of paper and then exchange papers with a partner.

CHAPTER 8 Review

Visual Summary

Summarize each lesson in your own words.

Lesson 1 \qquad
features.

Lesson 2 Earthquakes, volcanoes, Landslides, and
floods cause Earth's surface to change quickly.

Lesson 3 Weathering and erosion usually cause
slow changes to Earth's surface.

Vocabulary

Fill each blank with the best term from the list.

continent	earthquake	Landslide	volcano
core	erosion	magma	weathering
crust	landform		

1. Each of the seven great Land areas on Earth is called a continent
2. The breaking down of rocks into smaller pieces is called weathering
3. A mountain is an example of a Landform
4. A mountain that builds up around an opening in Earth's crust is a volcano
5. The sudden movement of rocks in Earth's crust might cause an earthquake
6. Melted rock below Earth's crust is called magma
7. The movement of weathered rock by such things as wind, moving water, and glaciers is known as \qquad .
8. Earth's deepest, hottest layer is the cor
9. Earth's coot, thin top Layer is called the crust
10. The rapid movement of rocks and soil downhill is a landslide

Depth of Knowledge

Level 1 Recall Level 1 requires memory of a fact, a definition, or a procedure. At this level, there is only one correct answer.

Level 2 Skill/Concept Level 2 requires an explanation or the ability to apply a skill. At this level, the answer reflects a deep understanding of the topic.

Level 3 Strategic Reasoning Level 3 requires the use of reasoning and analysis, including the use of evidence or supporting information. At this level, there may be more than one correct answer.

Level 4 Extended Reasoning Level 4 requires the completion of multiple steps and requires synthesis of information from multiple sources or disciplines. At this level, the answer demonstrates careful planning and complex reasoning.

CHAPTER 8 Review

Skills and Concepts

Answer each of the following.

11. Cause and Effect What couses landslides?

Possible answer: Wet weather can Loosen soil. The pull of gravity on
loose rock and soil can cause the rock and soil to foll.
12. Descriptive Writing Describe what the ocean flaor laoks like.

Responses will vary. Student responses may include descriptions of
features such as trenches, seamounts, and abyssal plains.
13. Make a Model Suppose you want to show the difference between a plateau and a mauntain. Explain how yau could build a model to show the difference.
Possible answer: I could build models using clay. My plateau model.
would hove steep sides and a flat top. My mountain model would be tall
but would not have a flat top.
14. Critical Thinking What might couse a volcanic mountain to
form quickly?
Possible answer: If a wolcono erupts continuously or gives off a lot of
Lava, a volcanic mountain could form quickly.
15. How can erosion be cuised by a stream ar a river? Answers should mention that the force
of moving Water can carry rocks and
Sediment away from the bank of a river or
streari.

16. Experiment Would clay or sand be washed away more easily by rain? Make a prediction. How could you test your prediction?
Experiment Sand; a possible experiment would be to put samples of clay
and sand in the raised end of a tilted container and then pour water over
the clay and sand to see which washes away faster.
17. True or False All mountains are volcanoes. Is this statement true or false? Explain.
False; some mountains are not volcanic.
18. True or False Earth's core has melted and solid rock. Is this statement true or false? Explain.
True; the inner core is solid rock. The outer core is melted rock.
19. Which of the following most likely causes weathering?
A animals
C wind
B rocks
D soil
20. What can cause Earth's features to change?

Answers will vary. Students should use information from the
chapter to answer.

Test Prep

Circle the best answer for each question.

1. Look at the diogram below.

The arrow paints to which tandform?
A mountain
E plateau
C. peninsuld

D valley
2. Which of these is most likely a slow process?

A a beach flooding
B a volcono erupting
C. o rock weathering

D on earthquake
3. Which bodies of woter cover most of Earth's surface?

A oceans
B lakes
C rivers
D ponds
4. The meited rock under Earth's crust is called

A lava.
日 rocks.
C osh.
D mogma.
5. Laok at the diagrom showing Earth's loyers.

In which loyer does on earthquake happen?
(A) 1

日 2
C 3
D 4
6. Which landform has steep sides with a flat top?

A a peninsula
B an istand
C. a plateau

D a valley
7. A scientist recorded the number of earthquakes in the United States for four years. She recorded this information in a chart.

Earthquakes in the United States	
Strength	Number of Earthquakes
great	0
major	1
strong	2
moderate	32
light	245
minor	800

Which inference can she make from this information?

A A minor eorthquake is tikely to hoppen somewhere in the United States every year.
B A great earthquake is likely to happen somewhere in the United States every year.
C A moderate earthquake is not likely to happen anywhere in the United States.
D A light eorthquake can never happen in the United States.
8. Which feature of the ocean floor is like a canyon?

A seamount
B abyssal plain
C continental slope
D trench

Answer the following questions.

Use the picture below to answer questions 9-10.

9. The land along this beach is eroding. Name two possible causes of the erosion shown here.

Possible answers: ocean waves,
gravity
10. Describe one way that this erosion could be slowed down.

Possible answers: planting
trees, building a seawall

