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Algebraic Expressions and Algebraic Fractions
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The Remainder and Factor Theorems

5 o S 3 Rl 3L sl LI &, 1 Sy

1) (3x°—5x2+3x+1) + (x — 4)

2) (=5x*+3x —1)= (x +3)

3) (X +7x%+3x+1) - 2x+1)

©

o
o

[}
Lo
<

4) (x°—x*+2)+(@Bx-9)
K ia a5 66 sl ¥ —2 o X0 432 —kx 47 dend L OIS (5

Kiad aor b 07 g gy ¥~k o 607 — x — 8 dand SL OIS 13| (6

8 ol g 2y Sl D1 adn 1S 13) Lo sdim ¢ J5Y1 o yull o Dy P (x) 350 528 b L IS 3
P ()=0 Bolaodl o o3 o SN Jol goll 33 5 Y 5502

7) x°—21x—20;x+4
8) x4+ 3x2+5x—1;x+1

9) 2x* — 7x® — 38x% + 103x + 60 ; 2x + 1

10) 3x° + 2x* + 3x* —4x+3;x -5

L S B3 g 858 IS Jolo 3 o) 5Linn Y1 & a5 fomi
11) x* —19x2 + 90
12) 2% + 9x2 —6x— 5

13) x*+3x% - 9x*+3x - 10



BYNEN Py {
Exponents and Roots
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Logarithmic Expressions

Lj\.lLic)KSJo-ﬁs dnx=0.1,Iny=-0.5Inz=0.4:05 13|

1) In xyz 2) ln% 3) lnxy;
z
P b S B e ol DY il 035
4) log5 /625 5) ln\(y; go
=
1 slaall 3 gl b U s dpens )l 55 IS ST
6) log, [(2x)° (x + 1)] 7) log, [(4x + 2)°% (x — 4)]
3x* (x+1)3
8) 10g13 ﬁ 9) logzﬁ

el 5550l S Sl e de ) I3 Ls JS S
10) 3 log, (5x + 6) — % log, (x — 4)
1) 2 — log,6—2log, x
12) log, 8 + log, x —2 log, (x + 4)
13) log y + log 3 —% log(x) +2log 3

14) log, y + log, x — %log3 x +3log,z

ol o g s o 3T LG e Legro IS dad s 5l o5 o acall s (6 2a0) e sle 51 e S Y Tog 19 s (15
.MU\O}G)

@ pall8li R & (L =10log R &3l L;lvf (AdB) Jory WL L o sall 5 S 13) 1 isum (16
€ geal) 85 2 5 Vg 055 e 23S Lo Jel B L o Bl 3002]) el 13] e



Aatosle ol Zew 1 S ¥ alaol
Exponential and Logarithmic Equations
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Estimating Limits
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Limit at a Point
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Limits of Trigonometric Functions at a Point
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Limit at Infinity
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Continuity at a Point
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Average Rate of Change
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The Derivative
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Basic Derivative Rules

S G Al S Ao d

1) y =227 _ yxlis 2) fx) =20 —x* VX +2
3 1 2
3)y=7’§ 4) h(x)=x4(3—?+?)

4
—x) 6) r(x)zw
VX

Differentiation (b laitt olus A FAVRY

8) f(x):xz(\/f+%+%+%)

L OYL (1) acelis,l O 151 ¢ 5 Y] ik - TN, e GIG (9
g n(’ 3 J £ dp) P P QJ_A £ - V_AM>
ok L DS s 0 ¢ 1 gL e I E o B (1) = 144 — 1682

.0, aﬁsl.x:{‘ﬁ\r,o,d\ i ,u(a

2 el o el ] o 551 231 (b

BV e Lo smy g ) iy U1 0 01 (€

2 Y g el a3 s 5 (d
x=2ldie f(1) = — 2% + 20 + 3 VI el Suloal Uslas 51 (10
.q&éiu»\.uumbﬁ@gcy:f—xz—x+125\.0\&@&;1&3\;)\19&3\93;- (1

17



BLEEY B dawdlly o puall Gucld
Product and Quotient Derivative Rules
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Derivatives of Trigonometric Functions
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Higher-Order Derivatives
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6) f(x) =9x°-27x

7 f)=x'
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Concavity and Inflection Points

tder g o) SlamsI bl su> g ¢ W SVl e ST S DI a5 o
1) f(x) =x>—3x°-3x+5

3

2)f(x) =+ i—

3) fx) =x7— 1

8)f(x)=/x+5

i Slactas [ ENR

5) f(x) = (x+2)°— 4

6) f(x) = ox’ — 27

x—2
7)f(x)= x+4
ZL@:«y':ja-‘gc&&;bldwy‘bw:b‘gc@w‘oyw‘yg}sg}m.mﬁﬁwja‘

8)f(x)=x"+1

Applications of Differentiation (&
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Applications of Differentiation (&
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Applications on Extreme Values
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Applications of Differentiation (&
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Applications of Differentiation (&
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