

الموضوع : الدوال اللوغاريتمية

الأهداف : (1) – أن يقيم الطالب التعبيرات التي تتضمن لوغاریتمات .

(2) – أن يرسم الطالب التمثيلات البيانية للدوال اللوغاريتمية و يحللها .

الدوال والتغيرات اللوغاريتمية

يطلق على معكوس $f(x) = b^x$ دالة لوغاریتمية بالأساس b .

ويقرأ لوغاریتم x للأساس b ويرمز لها بـ $\log_b x$

الربط بين التعبيرين اللوغاريتمي والأسي

إذا كان $1 \neq b$ و $0 < b$. و $0 < x$. إذا يكون

الشكل الأسي

$$b^y = x$$

أس أس

الشكل اللوغاريتمي

$$\log_b x = y$$

أس أس

أن $\log_b x$ هو الأسس

أنواع اللوغاريتم حسب الأسس :

يُسمى اللوغاريتم بالأساس 10 أو \log_{10} **لوغاريتم عادي**

دالة اللوغاريتم العادي $y = \log x$ هي معكوس الدالة الأسيّة $y = 10^x$. فقط في حالة $x > 0$. لكل $0 < y = \log x$

يُسمى اللوغاريتم بالأساس e أو \log_e **لوغاريتم طبيعي** ويشير إليه بالرمز \ln .

دالة اللوغاريتم الطبيعي $y = \ln x$ هي معكوس الدالة الأسيّة $x = e^y$.

فقط في حالة $x > 0$. لكل $y = \ln x$

الخصائص الأساسية للوغاريتمات

إذا كان x عدداً حقيقياً.

$$\ln 1 = 0 \quad \bullet$$

$$\ln e = 1 \quad \bullet$$

$$\ln e^x = x \quad \bullet$$

$$e^{\ln x} = x, x > 0 \quad \bullet$$

إذا كانت $0 < b \neq 1$ و x هو عدد حقيقي، إذا كان x عدداً حقيقياً.

$$\log 1 = 0 \quad \bullet$$

$$\log 10 = 1 \quad \bullet$$

$$\log 10^x = x \quad \bullet$$

$$10^{\log x} = x, x > 0 \quad \bullet$$

$$\log_b 1 = 0 \quad \bullet$$

$$\log_b b = 1 \quad \bullet$$

$$\log_b b^x = x \quad \bullet$$

$$b^{\log_b b^x} = x, x > 0 \quad \bullet$$

أوجد قيمة كل تعبير ممالي:

$$(1) \quad \log_2 8$$

$$(2) \quad \log_6 \frac{1}{36}$$

$$(3) \quad \log_{\sqrt{9}} 81$$

$$(4) \quad \log 42$$

$$(5) \quad \log 5275$$

$$(6) \quad 3 \ln e^4$$

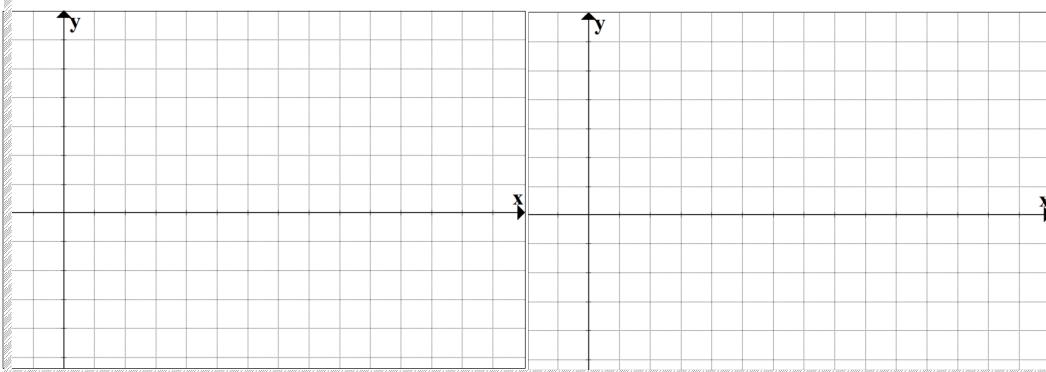
$$(7) \quad \log_{36} \sqrt[5]{6}$$

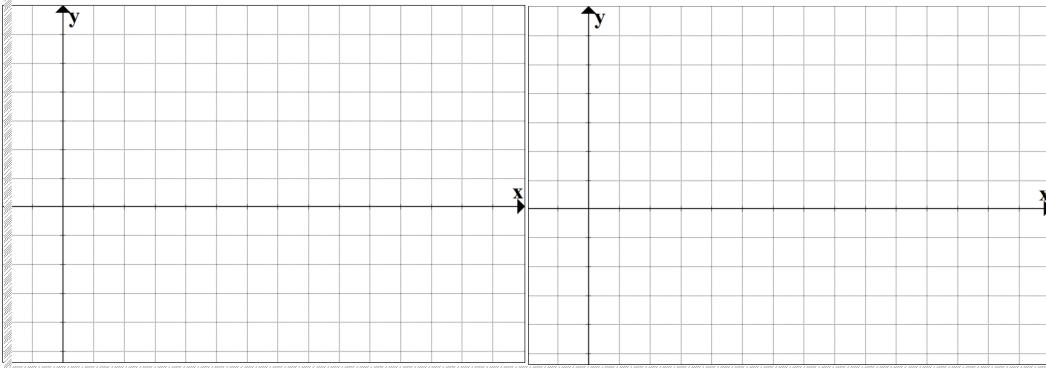
$$(8) \quad \log 635$$

$$(9) \quad \ln (-6)$$

$$(10) \quad \ln 8$$

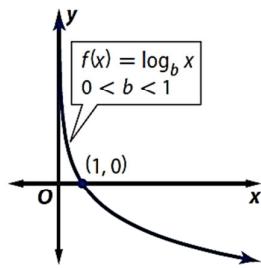
$$(11) \quad \log 1000$$

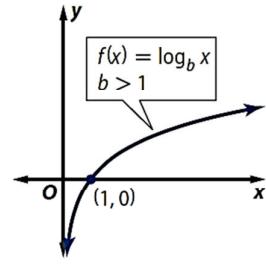

$$(12) \quad \log_{\sqrt[7]{4}} 64$$


$$(14) \quad e^{\ln 4}$$

$$(15) \quad \ln \left(\frac{1}{e^3} \right)$$

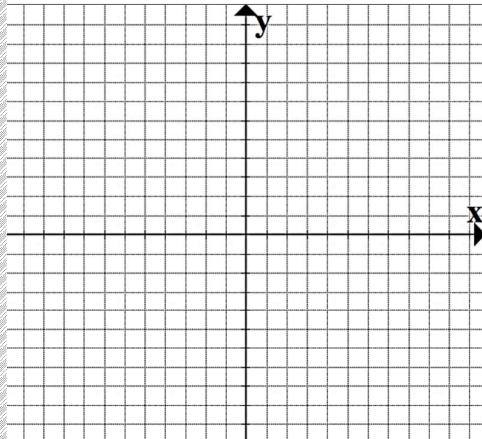
$$(16) \quad 10^{\log 3}$$


التمثيلات البيانية للدوال الوجعاريتمية



خصائص الدوال اللوغاريتمية

التضاؤل اللوغاريتمي


النمو اللوغاريتمي

ستستخدم التمثيل البياني لـ $f(x)$ لوصف التحويل الذي يؤدي إلى رسم $g(x)$. ثم ارسم تمثيلي $f(x)$ و $g(x)$ البيانيين.

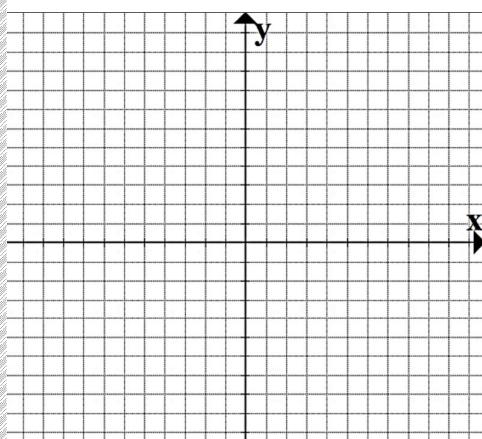
(20) $f(x) = \log_2 x$

$g(x) = \log_2 x + 3$

المجال:

المدى:

التقاطع مع المحور الرأسي:


التقاطع مع المحور الأفقي:

الخط المقارب:

.....

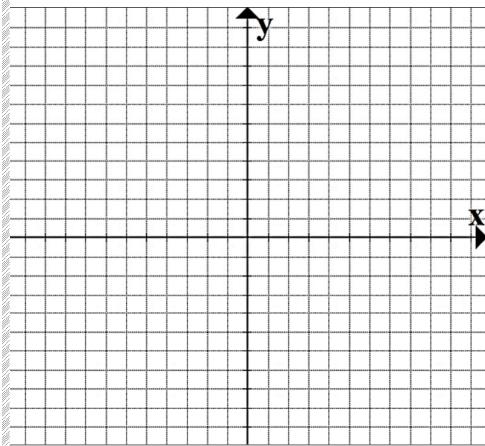
(21) $f(x) = \log_3 x$

$g(x) = \log_3(x - 1)$

المجال:

المدى:

التقاطع مع المحور الرأسي:


التقاطع مع المحور الأفقي:

الخط المقارب:

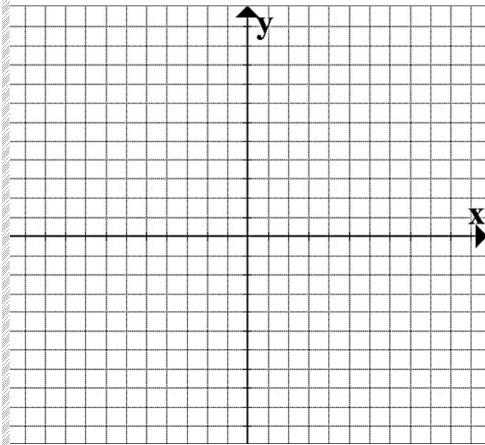
.....

(22) $f(x) = \log x$

$g(x) = -\log(x - 2)$

المجال:

المدى:


التقاطع مع المحور الرأسي:

التقاطع مع المحور الأفقي:

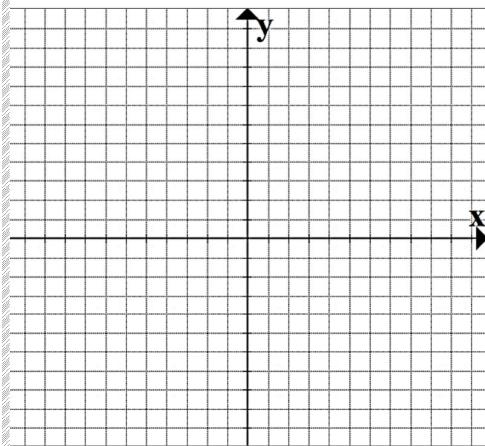
الخط المقارب:

(23) $f(x) = \ln x$

$g(x) = 0.5 \ln x$

المجال:

المدى:


التقاطع مع المحور الرأسي:

التقاطع مع المحور الأفقي:

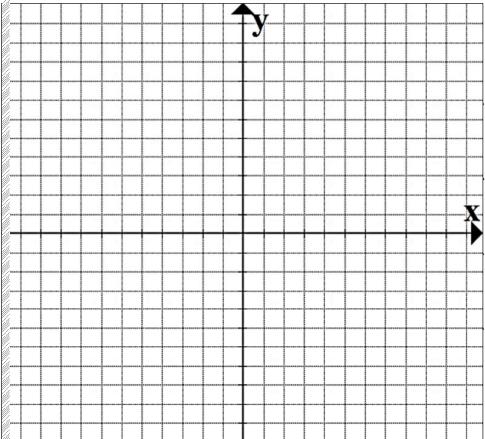
الخط المقارب:

(24) $f(x) = \ln x$

$g(x) = 3 \ln x + 1$

المجال:

المدى:


التقاطع مع المحور الرأسي:

التقاطع مع المحور الأفقي:

الخط المقارب:

$$(25) \quad f(x) = \log x$$

$$g(x) = -2\log x + 5$$

المجال :

المدى :

التقاطع مع المحور الرأسي :

التقاطع مع المحور الأفقي :

الخط المقارب :

أوجد معكوس كل معادلة :

$$(26) \quad y = \log 2x$$

.....

.....

.....

$$(27) \quad y = 6\log 0.5x$$

.....

.....

.....

$$(28) \quad y = e^{3x}$$

.....

.....

.....

$$(29) \quad y = 4e^{2x}$$

.....

.....